Recherche & Développement Toutes les publications Scoring d’octroi par Machine Learning interprétable ?

Scoring d’octroi par Machine Learning interprétable ?


Télécharger le fichier
ETUDE INTERNE
AUTEUR : VICTOR NGUYEN, AHMAD CHARAF, EVA GERMINI

 

Le scoring est un outil d’aide à la décision permettant d’anticiper la capacité de remboursement d’un emprunteur. Dans cette note, deux méthodologies de classement des prêts selon leur probabilité de défaut sont comparées sur une base de données emprunteur.

Premièrement, l’approche classique de la construction d’une grille de score – basée sur un modèle de régression logistique – permet une identification et une interprétabilité claire des variables contributrices au risque.

Secondement, les méthodes ensemblistes – Random Forest et XgBoost – offrent de meilleures performances prédictives sur nos données mais leur complexité peut limiter leur portée opérationnelle. En effet, contrairement à l’approche classique de scoring, l’identification de la contribution de chaque variable au risque de défaut et la décision d’octroi nécessitent le recours au modèle prédictif et à des techniques d’interprétabilité qui peuvent être complexes à mettre en œuvre.

Télécharger le fichier

Publications récentes

#news

European Taxonomy: Reconciling Performance and Transition

20/10/2025

Leveraging EU Green Investment Frameworks for Sustainable Portfolio Construction

Lire plus
Data Quality et intelligence artificielle sous Solvabilité 2 : vers un pilotage prudentiel augmenté

15/10/2025

DATA QUALITY ET INTELLIGENCE ARTIFICIELLE SOUS SOLVABILITÉ 2 : VERS UN PILOTAGE PRUDENTIEL AUGMENTÉ

Lire plus
S’adapter à +4°C un bon réflexe, mais pas encore la bonne méthode

02/10/2025

S’adapter à +4°C : un bon réflexe, mais pas encore la bonne méthode

Lire plus
}) })