Recherche & Développement Toutes les publications Scoring d’octroi par Machine Learning interprétable ?

Scoring d’octroi par Machine Learning interprétable ?


Télécharger le fichier
ETUDE INTERNE
AUTEUR : VICTOR NGUYEN, AHMAD CHARAF, EVA GERMINI

 

Le scoring est un outil d’aide à la décision permettant d’anticiper la capacité de remboursement d’un emprunteur. Dans cette note, deux méthodologies de classement des prêts selon leur probabilité de défaut sont comparées sur une base de données emprunteur.

Premièrement, l’approche classique de la construction d’une grille de score – basée sur un modèle de régression logistique – permet une identification et une interprétabilité claire des variables contributrices au risque.

Secondement, les méthodes ensemblistes – Random Forest et XgBoost – offrent de meilleures performances prédictives sur nos données mais leur complexité peut limiter leur portée opérationnelle. En effet, contrairement à l’approche classique de scoring, l’identification de la contribution de chaque variable au risque de défaut et la décision d’octroi nécessitent le recours au modèle prédictif et à des techniques d’interprétabilité qui peuvent être complexes à mettre en œuvre.

Télécharger le fichier

Publications récentes

#news

Panorama Du Marché De La CyberAssurance Décryptage Du Rapport LUCY 2025 Et Analyses Complémentaires

10/06/2025

Panorama du marché de la CyberAssurance : Décryptage du Rapport LUCY 2025 et analyses complémentaires

Lire plus
Maîtrise Du Risque De Liquidité En Situation De Dépassement De Gap Exigences Prudentielles Et Solutions De Couverture En ALM Nexialog Article

26/05/2025

Maîtrise du risque de liquidité en situation de dépassement de Gap : exigences prudentielles et solutions de couverture en ALM

Lire plus
ESG EN SUSPENS Les Enjeux Clés De La Proposition Omnibus I Avant Son Adoption Nexialog Article

23/05/2025

ESG en suspens : les enjeux clés de la proposition Omnibus I avant son adoption

Lire plus