Recherche & Développement Toutes les publications Fast Calibration of Implied Volatility Model

Fast Calibration of Implied Volatility Model


Télécharger le fichier
ETUDE INTERNE
AUTEURS : ERNESTO LOPEZ FUNE, JONATHAN VONGDARATH

 

Calibrating financial models becomes increasingly challenging as they become more and more complex. This step is, nevertheless, crucial for guiding professionals in minimizing the risks of inaccurate pricing or hedging results, which can lead to significant financial losses. In the framework of the SVI model, its complexity can be time consuming due to the non-convex nature of the problem, which is why in this article we investigated the performance of several optimization algorithms, including machine learning regression ones, in terms of accuracy and computational efficiency. Furthermore, our off-line computations enable us to adjust the parameters in real time, without the need for time-consuming recalibrations. This provides greater flexibility and adaptability to changing market conditions, which is crucial for financial institutions seeking to stay ahead of the curve.

Télécharger le fichier

Publications récentes

#news

Panorama Du Marché De La CyberAssurance Décryptage Du Rapport LUCY 2025 Et Analyses Complémentaires

10/06/2025

Panorama du marché de la CyberAssurance : Décryptage du Rapport LUCY 2025 et analyses complémentaires

Lire plus
Maîtrise Du Risque De Liquidité En Situation De Dépassement De Gap Exigences Prudentielles Et Solutions De Couverture En ALM Nexialog Article

26/05/2025

Maîtrise du risque de liquidité en situation de dépassement de Gap : exigences prudentielles et solutions de couverture en ALM

Lire plus
ESG EN SUSPENS Les Enjeux Clés De La Proposition Omnibus I Avant Son Adoption Nexialog Article

23/05/2025

ESG en suspens : les enjeux clés de la proposition Omnibus I avant son adoption

Lire plus