Recherche & Développement Toutes les publications Markov Switching Normal-Mixture GARCH

Markov Switching Normal-Mixture GARCH


Télécharger le fichier

ETUDE INTERNE
AUTEURS : ADRIEN MISKO, BAYE MATAR KANDJI

We introduce a volatility model in which the conditional volatility is driven by both a Markov switching (MS) sequence and innovations with normal mixture (NM) distributions, called MS-NM-GARCH. The existence of a strictly stationary solution and a second-order stationary solution is discussed. We use the likelihood approach to estimate the parameters of the model and, to our knowledge, establish for the first time the strong consistency of the maximum likelihood estimator (MLE) of a class of MS-GARCH under standard regular conditions. We develop an iterative algorithm based on the Hamilton filter and the Expectation Maximization algorithm to efficiently compute the MLE. Finally, we test our model to real financial data, showcasing its practical relevance.

Télécharger le fichier

Publications récentes

#news

Dégradation De La Biodiversité Un Risque Croissant En Santé Prévoyance Nexialog Consulting

21/10/2025

Dégradation de la biodiversité : un risque croissant en santé et prévoyance

Lire plus
European Taxonomy: Reconciling Performance and Transition

20/10/2025

Leveraging EU Green Investment Frameworks for Sustainable Portfolio Construction

Lire plus
Data Quality et intelligence artificielle sous Solvabilité 2 : vers un pilotage prudentiel augmenté

15/10/2025

DATA QUALITY ET INTELLIGENCE ARTIFICIELLE SOUS SOLVABILITÉ 2 : VERS UN PILOTAGE PRUDENTIEL AUGMENTÉ

Lire plus
}) })