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Abstract
We introduce a volatility model in which the conditional volatility is driven by both
a Markov switching (MS) sequence and innovations with normal mixture (NM) distri-
butions, called MS-NM-GARCH. The existence of a strictly stationary solution and
a second-order stationary solution is discussed. We use the likelihood approach to
estimate the parameters of the model and, to our knowledge, establish for the first
time the strong consistency of the maximum likelihood estimator (MLE) of a class
of MS-GARCH under standard regular conditions. We develop an iterative algorithm
based on the Hamilton filter and the Expectation Maximization algorithm to efficiently
compute the MLE. Finally, we test our model to real financial data, showcasing its
practical relevance.
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1 Introduction

Since their introduction by Engle (1982) and Bollerslev (1986), the ARCH and GARCH models
are among the most widely used to stylize the conditional volatility of financial returns. These
models have gained popularity due to their ability to reproduce important empirical characteristics
observed in real financial returns, such as volatility clustering and memory. They are also appre-
ciated for their parsimonious structure, in which the conditional variance is a linear combination
of the squares of past volatilities and returns. Several variants of the ARCH and GARCH models
have been developed to address certain gaps in these models. These include TGARCH of Zakoian
(1994), introduced to capture the asymmetric effects observed on the conditional distribution de-
pending on the sign of the past returns; The ARCH(∞) of Robinson (1991) is designed to capture
the long-memory effect. The GARCH-X models allow to have time-variying coefficients depending
on observed covariates, such as macroeconomic variables. The class of Markov-Switching GARCH
(MS-GARCH), introduced by Hamilton and Susmel (1994) and Cai (1994) enables to incorporate
regime changes in the volatility process induced by phases of economic/financial crises, recessions,
or depressions.

Most of these models consider a single component of conditional volatility. However, several
applied researches, see Lee and Engle (1993), Engle and Rangel (2008), Engle et al. (2013), sug-
gest that multi-component volatility models are more effective to capture complex dynamics such
as long memory effects by enabling improved long-term volatility forecasts. Moreover, classical
GARCH considers sequence of independent and identically distributed (iid) innovations, where
the marginal distribution is in practice assumed to be Gaussian. This condition implies some
restrictive features like null conditional skewness and excess kurtosis whereas it is well known
that the conditional distribution of daily financial returns is Leptokurtic, see for instance Nelson
(1996) and Johnston and Scott (2000). To address this shortcoming and leverage the advantages
of multi-components modeling, Haas et al. (2004a) and Alexander and Lazar (2006) independently
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introduce the normal mixture-GARCH model (NM-GARCH). In this model, the conditional distri-
bution is a mixture of Normal laws, incorporating multiple component volatilities. Their authors
conclude that this class of models can successfully reproduce the excess kurtosis and is particularly
suited to model and predict the conditional density and volatility of financial returns, such as ex-
change rates. However, this model is not structurally designed to take account of regime changes.
The MS-GARCH constitutes another class of GARCH models in which the conditional distri-
bution is a mixture distribution with time-varying mixture coefficients, allowing regime changes.
However, the inference of these models is very difficult due to the path dependence of the like-
lihood on the latent factor. In practice, only MS-ARCH models are considered to avoid this
dependence, leading to a persistence loss. To overcome this dependency and gain persistence,
Haas et al. (2004b) introduce a version of the MS-GARCH model without path dependence in the
conditional volatilities. However, in the case of a known presence of different regimes with low
probabilities of state change, such as in stock markets, the MS-GARCH could potentially have dif-
ficulty to arbitrate between capturing the no-normality of the innovations and effectively filtering
states by conditionally considering a classical GARCH over a long period. Moreover, Haas et al.
(2004b) note that the structure of the NM-GARCH, unlike the MS-GARCH, allows to consider
different components means, that create skewness, without altering the first-order dynamics of
the process.

We introduce in this paper, a Markov-switching Normal-mixture GARCH model (MS-NM-
GARCH) in which the conditional volatility is driven by both a Markov switching sequence and
innovations with normal-mixture distributions. We use the maximum likelihood approach to
estimate our parameters, classically used for the inference of GARCH models. The theoretical
properties of the maximum likelihood estimator (MLE) of a non-regime switching GARCH are
well known, see Francq and Zakoian (2004) and Berkes et al. (2003) for the classical GARCH,
Lee and Lee (2009) establish the asymptotic properties of the MLE of the NM-GARCH. For the
class of pure MS-GARCH, the MLE theoretical properties have never been established to our
knowledge so far. The difficulty in establishing these properties lies in the path dependence on the
latent factor or in the non-known effect of the initial value in the quasi-likelihood. For MS-ARCH
which do not present these problems, the consistency of the MLE is established by Francq et al.
(2001) and asymptotic result for a more general model included the MS-ARCH can be found in
Douc et al. (2004). In this paper, we establish the strong consistency of the MS-NM-GARCH
MLE, this result is a first of this type for the class of MS-GARCH models.

The paper is organized as follows. In Section 2, we introduce the model and discuss the
existence of a stationary solution. Section 3 is dedicated to its calibration with MLE and Hamilton
filter. Finally, section 4 deals with empirical results. We decided to put all the proofs in appendix
A to make the read easier.

2 The Model

2.1 Description

We say that a random variable follows a normal mixture law if its distribution admits a density
of the form

Φ(x) =
q∑

i=1
miφi(x)

q∑
i=1

mi = 1 φi(x) = φ
(
x;µi, σ

2
i

)
where [m1,m2, . . . ,mq] is the positive mixing law, and φ denotes the normal density function. We
will denote this as X ∼ NM

(
m1, . . . ,mq;µ1, . . . , µq;σ2

1 , . . . , σ
2
q

)
.

Remark 2.1. Let η and δ be two independent random variables with respective laws: the standard
Gaussian distribution, and the distribution with support {1, . . . , q} with respective probabilities
{m1, . . . ,mq}. One can remark that µδ + σδη follows a NM

(
m1, . . . ,mq;µ1, . . . , µq;σ2

1 , . . . , σ
2
q

)
distribution. Conversely, by Lemma A.1, every random variable X with a normal mixture distri-
bution can be decomposed in the latter form with δ(X) := δ and η(X) := η.
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We define the d-q Markov Switching Normal Mixture GARCH process MS(d)-NM(q)-GARCH
as follows: rt | It−1 ∼ NM

(
m1,∆̃t

, . . . ,mq,∆̃t
;µ1, . . . , µq;σ2

1,t, . . . , σ
2
q,t

)
,
∑q

i=1 mi,∆̃t
= 1

σ2
i,t = ωi + αi(rt−1 − µt−1)2 +

∑q
j=1 βi,jσ

2
j,t−1, for i = 1, 2, . . . , q.

(2.1)

where It represents the information set available at time t, µt = µδ(rt|It−1), (∆̃t) is a irreducible
and aperiodic It−1 measurable Markov chain with states {1, 2, . . . , d}. Let P̃ = (pi,j)i,j = P(∆̃t =
j | ∆̃t = i) be the transition matrix and (mi,j)i,j = P(δt = i | ∆̃t = j) be the mixture matrix.
ω = (ωi)i, α = (αi)i, (βi,j)i,j , (pi,j)i,j ,m(j) = (mi,j)i are positive and ω1 < ω2 < · · · < ωq

This more general model adds a time varying mixture depending on a Hidden Markov process,
contrary to the normal mixture GARCH(1,1) considered by Haas et al. (2004a) and Alexander
and Lazar (2006). Model (2.1) includes several conditional volatility models. The Normal Markov
Switching ARCH is obtained when q = d, mi,i = 1, µi = 0 and βi,j = 0 for all i, j. If d = 1, we
obtain the NM-GARCH of Alexander and Lazar (2006), and if q = d, mi,i = 1, and µi = 0 for all
i, the model is reduced to the MS-GARCH of Haas et al. (2004b).

Remark 2.2. The main idea of this new model is to use the NM feature to better fit the structure
of the data (allowing excess of Kurtosis and fat tails) and use the MS feature to monitor the
structure change with time (especially in high volatility period when the Kurtosis may increase
drastically during a short period) and amplify the NM’s effect. As we’ll see in the next sections,
state 1 should reflect strong long memory effect observed in steady period and state q low memory
and fast adaptation to recent data as observed in crisis period; the other states act as intermediate
levels between these two. The transition matrix reflects the persistence of each state, in other
words, how long the model has to stay in a high kurtosis period without new information. The
matrix M monitors the level of kurtosis in each state.

2.2 Stationarity

In this section, we derive sufficient and necessary conditions to guarantee strict and second order
stationarity.

To study the existence of a strictly stationary solution of model (2.1), we reformulate it into a
more suitable equivalent form. For all t, let δt = δ(rt | It−1) and ηt = η(rt | It−1). By Remark 2.1,
it is not difficult to show that conditionally to ∆̃t, δt is an independent process, its conditional
distribution has support {1, . . . , q} and ηt is iid with standard Gaussian marginal distribution,
independent of ∆̃t and δt. It follows that the process ϵt defined by: ϵt = rt − µδt

for all t, verify
the following model:{

ϵt = σδt,tηt

σ2
i,t = ωi + αiϵ

2
t−1 +

∑q
j=1 βi,jσ

2
j,t−1, for i = 1, 2, . . . , q.

(2.2)

Thus, the existence of stationary of (2.1) and (2.2) are equivalent and we now focus on the process
ϵt.

2.2.1 Strict Stationarity

Defining (bt)i,j = αiη
2
t−11δt−1=j + βi,j for all i, j ≤ q, we have σ2

i,t = ωi +
∑q

j=1(bt)i,jσ
2
j,t−1 for all

i. Thus we can rewrite (2.2) in the vector form as

σ2
t = ω + Btσ

2
t−1

where
σ2

t =
(
σ2

t,1, . . . , σ
2
t,q

)′
, ω = (ω1, . . . , ωq)′

, Bt = ((bt)i,j)i,j

Since E log+ ∥B0∥ is finite, we can define
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γ := inf
n≥1

1
n

E log ∥BnBn−1 · · · B1∥.

Since (δt, ηt) is stationary and ergodic, the definition of γ is independent of the chosen norm
due to the equivalence of norms and the Kingman subadditive ergodic theorem, see Kingman
(1973), which states that:

γ = lim
n→+∞

1
n

E log ∥BnBn−1 · · · B1∥ = lim
n→+∞

1
n

log ∥BnBn−1 · · · B1∥ a.s. (2.3)

For all t ≥ 0, let B(0)
t the identity matrix and B(n)

t = Bt ◦ · · · ◦Bt−n+1 for all n ≥ 1. Consider the
following condition

P(inf
i

{(
+∞∑
k=0

B(k)
0 ω)i, i ≤ q} = 0) < 1. (2.4)

Theorem 2.1. If γ < 0 under (2.4), model (2.2) (and thus model (2.1)) admits a (unique) strictly
stationary (and ergodic) solution. The vector component volatilities is given by

σ2
t =

+∞∑
k=t

B(k)
t ω, for all t.

Conversely, if model (2.2) (or model (2.1)) admits a positive strictly stationary solution under
(2.4), then γ < 0.

A process is strictly stationary if every finite subsequence has the same distribution as any of
its shifts. This property is often necessary for the statistical inference of econometric models, such
as GARCH, as in our setup.

Proof. Direct consequence of Kandji (2024, Theorem 3.1)

It is well known that γ seems to be impossible to compute explicitly, but estimating it through
computer simulations using (2.3) is feasible but expensive. For all squared matrice M , we denote
ρ(M) the spectral radius of M . Let β = (βi,j)i,j . Since 0 ≤ β ≤ Bt for all t, a direct consequence
of the condition γ < 0 is that ρ(β) < 1. In practice, it’s not necessary to constrain the model’s
calibration in the space of stationarity parameters but only on β, along with other regularity
conditions not linked to stationarity, to sufficiently guarantee the consistency of the likelihood
estimator.

For the classical MS-GARCH model, Francq et al. (2001) established the result of Theorem
2.1 under the assumption that infi ωi > 0. It is easy to see that this condition implies (2.4),
but the converse is not necessarily true; an easily checked example is that: if β is irreducible
and supi ωi > 0 , even if infi ωi = 0, then (2.4) hold. Furthermore, note that Theorem 2.1
pertains strictly stationary solutions without additional constraint, in contrast to Alexander and
Lazar (2006) and Haas et al. (2004b), which only provide conditions for second-order stationary
solutions for the NM-GARCH and MS-GARCH.

2.2.2 Second Order Stationarity

Let us denote π̃ = (π̃1, · · · , π̃d) the stationary distribution of ∆̃t. Let us define b̃t(∆̃t)i,j =
αimj,∆̃t

+ βi,j , B̃(∆̃t) =
(
b̃t(∆̃t)i,j

)
i,j

and let the dq × dq and d× dq matrices:

Q =


p1,1B̃(1) p2,1B̃(1) · · · pd,1B̃(1)
p1,2B̃(2) p2,2B̃(2) · · · pd,2B̃(2)

...
p1,dB̃(d) p2,dB̃(d) · · · pd,dB̃(d)

 , and ψ =


p1,1m(1) p2,1m(1) · · · pd,1m(1)
p1,2m(2) p2,2m(2) · · · pd,2m(2)

...
p1,dm(d) p2,dm(d) · · · pd,dm(d)

 .
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Theorem 2.2. If ρ(Q) < 1 then model (2.1) admits a (unique) second order strictly stationary
(and ergodic) solution. The variance of rt is then given by

var (rt) = 1′
(d)ψ (Idq −Q)−1

z +
d∑

k=1
µ(k)2π̃k −

(
d∑

k=1
µ(k)π̃k

)2

(2.5)

where 1′
(n) = (1, . . . , 1) and z = (π̃1ω

′, . . . , π̃dω
′)′ are respectively 1 × n and dq × 1 matrices,

In the n× n, identity matrix, µ(k) =
∑q

i=1 mi,kµi and m(k) = (mi,k)i.
Conversely, suppose that Q is irreducible and that supi ωi > 0; if model (2.1) admits a positive

second order strictly stationary solution then ρ(Q) < 1.

A second-order stationary sequence is a strictly stationary sequence with a finite second-order
moment. The existence of a second-order moment can be used to measure the overall variability
of our series as well as to evaluate the autocorrelations.

Proof. Stated in A.2

Remark 2.3. The result of Theorem 2.2 aligns with the properties established by Francq et al.
(2001) for the classical MS-GARCH without component means. It is also easy to see that if q = d,
µi = 0, and mi,i = 1 for all i ≤ q, then 1′

(q)ψ = vec(P)′, and the last two terms of Eq. (2.5) are
zero, we recover the variance formula of Haas et al. (2004b, Eq. 13) for their MS-GARCH.

Unlike the condition imposed for strict stationarity, second-order stationarity is, in practice,
very easy to check using the condition ρ(Q) < 1, given in practice d and q are small. Note also
that in parameter estimation, this constraint could be added to obtain a second-order stationary
model without significant additional cost.

3 Calibration of Parameters

3.1 State space redefinition

We reformulate the model in another equivalent form in which the estimator is more practical to
use. Let ∆t = (∆̃t, δt) = (∆t,1,∆t,2). The idea is to reduce the model to one hidden factor with
dq states.

From (2.2) we deduct that :{
rt = µ∆t

+ σ∆t
ηt, µ∆t

= µ∆t,2 , σ∆t
= σ∆t,2,t

σ2
i,t = ωi + αi(rt−1 − µ∆t−1)2 +

∑q
j=1 βi,jσ

2
j,t−1, for i = 1, . . . , q

(3.1)

Here rt depends on ∆t,1 through ∆t,2 and ∆t is a Markov chain because:

P {(∆t,1,∆t,2) = (it, jt) | (∆k,1,∆k,2) = (ik, jk) : k < t}
= P {∆t,2 = jt | ∆t,1 = it, (∆k,1,∆k,2) = (ik, jk) : k < t}

× P {∆t,1 = it | (∆k,1,∆k,2) = (ik, jk) : k < t}
= P {∆t,2 = jt | ∆t,1 = it} × P {∆t,1 = it | ∆t−1,1 = it−1}
= P {∆t,1 = it, ∆t,2 = jt | ∆t−1,1 = it−1}
= P {(∆t,1,∆t,2) = (it, jt) | (∆t,1,∆t,2) = (it−1, jt−1)} .

1

Using the second-to-last equality of the above relation, we deduced that the transition prob-
abilities of ∆t is given by the entries P {∆t = (i, j) | ∆t−1 = (k, l)} = mj,ipk,i. Besides, we
can note that ∆t is a Markov process with dq states. Indeed, by considering a bijection κ |
κ(i, j) = (i−1)q+j, we can change the state space from {(i, j) : 1 ≤ i, j ≤ d, q} to {i : 1 ≤ i ≤ dq}.

1Given ∆̃t and ∆̃t−1 respectively, the variables (∆̃k, δk) and (∆̃k−1, δk) for k < t do not convey information on
δt = jt and ∆̃t respectively.
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The transition matrix P and the (unique) stationary distribution π′ of ∆t are respectively :

P =


p1,1C(1) p1,2C(2) · · · p1,dC(d)
p2,1C(1) p2,2C(2) · · · p2,dC(d)

...
pd,1C(1) pd,2C(2) · · · pd,dC(d)

 , π′ =


π̃1m(1)′

π̃2m(2)′

...
π̃dm(d)′

 (3.2)

Where for all k ≥ q, C(k) is the q2 matrix where all its rows are identical to m(k) = (mi,k)i

3.2 MLE derivation and convergence

In real financial data, the component means are estimated to be closer to zero, see (Alexander
and Lazar, 2006, table 2). Additionally, most conditional volatility models consider them null.
We chose a less restrictive approach in our model and assume them constant, denoted as µ. Thus,
we limit the number of parameters without losing too much information and avoid the problem
of likelihood path dependence of the latent factor. The parameters of the model (2.1) are then:

θ = (µ, (ωi, αi)i, (βi,j)i,j , (pi,j)i,j , (mi,j)i,j) .

Let τ be the projection in the second axis of the reciprocal function of κ, reflecting the values
of ∆t,2, and let (r1, . . . , rn) be a realization of (2.1). Given the initial values σ1,1 = σ2,1 =
. . . = σq,1 = 0 and an initial distribution π0 > 0, the conditional likelihood Lθ (r1, . . . , rn) is
given by summing over all the possible (e1, . . . , en) of the Markov chain, where the ei belong to
E = {1, . . . , dq}:

Lθ (r1, . . . , rn) =
∑

(e1,...,en)∈En

π0 (e1)
{

n∏
t=2

Pet−1,et

}{
n∏

t=1
ϕet (r1, . . . , rt)

}
(3.3)

where ϕet (r1, . . . , rt) = 1
(2π)1/2στ(et),t

exp
{

− (rt−µ)2

2σ2
τ(et),t

}
and the (σi,t)i are defined recursively

by

σ2
t = ct +Bσ2

t−1, (3.4)

where σ1 = (σ1,1, σ2,1, . . . , σq,1)′
, and for all t > 1,

σ2
t =


σ2

1,t

σ2
2,t

...
σ2

p,t

 , ct =


ω1 + α1(rt−1 − µ)2

ω2 + α2(rt−1 − µ)2

...
ωp + αp(rt−1 − µ)2

 , B =


β1,1 β1,2 · · · β1,q

β2,1 β2,2 · · · β2,q

...
βq,1 βq,2 · · · βq,q

 .

Denoted by Θ the space of parameter, the maximum likelihood estimator is defined as any mea-
surable solution of

θ̂n = arg max
θ∈Θ

Lθ (r1, . . . , rn)

We show in A.3 that under regular assumptions, θ̂n converges almost surely to θ0 as n → ∞.
Unfortunately, the formula 3.3 cannot be used for calibration due to the considerable number of
terms in the sum. Various techniques have been developed in existing literature to calculate the
likelihood. For simplicity, we chose one of the most popular: the Hamilton Filter coupled with
the Expectation Maximisation technique.
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3.3 Computation by the Hamilton Filter

In the subsequent sections, we adapt the procedure described in (Francq and Zakoian, 2019,
Section 12.2.1). Let us denote b := dq, and let

πt|t =


P (∆t = 1 | rt, . . . , r1)

...
P (∆t = b | rt, . . . , r1)

 , πt|t−1 =


P (∆t = 1 | rt−1, . . . , r1)

...
P (∆t = b | rt−1, . . . , r1)


By Bayes’ theorem, we have

πt|t(i) = P (∆t = i | rt, . . . , r1) = ft (rt | ∆t = i, rt−1, . . . , r1) P (∆t = i | rt−1, . . . , r1)
ft (rt | rt−1, . . . , r1)

where ft (rt | rt−1, . . . , r1) =
∑b

i=1 ft (rt | ∆t = i, rt−1, . . . , r1) P (∆t = i | rt−1, . . . , r1)

ft (rt | ∆t = i, rt−1, . . . , r1) = 1
(2π)1/2στ(i),t

exp
{

− (rt − µ)2

2σ2
τ(i),t

}
. (3.5)

Let us denote by ⊙ the element-by-element Hadamard product of matrices and let

ft|t−1 = (ft (rt | ∆t = i, rt−1, . . . , r1))′
i≤b (3.6)

Starting from an initial value π1|0 = π (the stationary law), we can recursively computeπt|t =
πt|t−1 ⊙ ft|t−1

1′
{
πt|t−1 ⊙ ft|t−1

}
πt+1|t = P′πt|t

(3.7)

for t = 1, . . . , n
We deduce the conditional log-likelihood

logLθ =
n∑

t=1
log ft (rt | rt−1, . . . , r1) (3.8)

where
ft (rt | rt−1, . . . , r1) = 1′ {πt|t−1 ⊙ ft|t−1

}
. (3.9)

3.4 Expectation-Maximisation

Here we consider that the initial distribution π is not necessarily the stationary distribution. In
the EM algorithm, π is an additional parameter to be estimated.

Step E: Suppose that an estimator
(
θ(k),π(k)

)
of (θ,π) is available. It seems sensible to

approximate the unknown log-likelihood by its expectation given the observations (r1, . . . , rn),
evaluated under the law parameterised by

(
θ(k),π(k)

)
. Let θ̂ = (µ, (ωi, αi)i, (βi,j)i,j) be the

parameters involved in the GARCH part and (mi,j)i≤q,j≤d the mixture parameters. We get the
criterion

Q
(
θ,π | θ(k),π(k)

)
= Eθ(k),π(k) {logLθ,π (r1, . . . , rn,∆1, . . . ,∆n) | r1, . . . , rn}

It is shown that maximizing Q improves the likelihood at each iteration and, under regularity
conditions, the algorithm converges to a local extremum, dependent on the initial parameter, see
Dempster et al. (1977).
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By conditioning, one has

Lθ,π (r1, . . . , rn,∆1, . . . ,∆n) = Lθ,π (r1, . . . , rn | ∆1, . . . ,∆n)Lθ,π (∆1, . . . ,∆n)
= Lθ,π (r1, . . . , rn | ∆1, . . . ,∆n)
× Lθ,π

(
δ1, . . . , δn | ∆̃1, . . . , ∆̃n

)
Lθ,π

(
∆̃2, . . . , ∆̃n | ∆̃1

)
Lθ,π

(
∆̃1
)

and

Lθ,π (r1, . . . , rn | ∆1, . . . ,∆n) = Lθ,π (r1, . . . , rn | δ1, . . . , δn)

= Lθ,π (r1 | δ1)
n∏

t=2
Lθ,π (rt | δt, r1, . . . , rt−1)

Lθ,π

(
δ1, . . . , δn | ∆̃1, . . . , ∆̃n

)
=

n∏
t=1

Lθ,π

(
δt | ∆̃t

)
Lθ,π

(
∆̃2, . . . , ∆̃n | ∆̃1

)
=

n∏
t=2

Lθ,π

(
∆̃t | ∆̃t−1

)
.

Since

Lθ,π (rt | δt, r1, . . . , rt−1) = 1
(2π)1/2σδt

exp
{

− (rt − µ)2

2σ2
δt

}
Lθ,π

(
δt | ∆̃t

)
= mδt,∆̃t

Lθ,π

(
∆̃t | ∆̃t−1

)
= p∆̃t−1,∆̃t

then
Q
(
θ,π | θ(k),π(k)

)
= −1

2A1(θ̂) +A2(P̂) +A3(P̃ ) +A4 (π̃) + Cst

where Cst does not depend on the parameters and

A1(θ̂) =
n∑

t=1

q∑
j=1

(
(rt − µ)2

σ2
j,t

+ log σ2
j,t

)
Pθ(k),π(k) {δt = j | r1, . . . , rn}

=
n∑

t=1

q∑
j=1

(
(rt − µ)2

σ2
j,t

+ log σ2
j,t

)
d∑

i=1
Pθ(k),π(k) {∆t = κ(i, j) | r1, . . . , rn} ,

A2(P̂) =
q∑

i=1

d∑
j=1

logmi,j

(
n∑

t=1
Pθ(k),π(k) {∆t = κ(j, i) | r1, . . . , rn}

)

A3(P̃ ) =
d∑

i,j=1
log pi,j

n∑
t=2

Pθ(k),π(k)

{
∆̃t−1 = i, ∆̃t = j | r1, . . . , rn

}
A4 (π̃) =

d∑
i=1

log π̃iPθ(k),π(k)

{
∆̃1 = i | r1, . . . , rn

}
Step M: We aim at maximising, with respect to (θ,π), the estimated log-likelihoodQ

(
θ,π | θ(k),π(k)

)
.

For all t, n, let’s denote
πt|n := (P {∆t = i | r1, . . . , rn})′

i≤b and πt−1,t|n := (P {∆t−1 = i,∆t = j | r1, . . . , rn})′
i,j≤b

We define :

θ̄ = arg min
θ̂∈Θ

A1(θ̂)

θ̄ = arg min
µ,(ωi),(αi),(βi,j)

n∑
t=1

q∑
j=1

(
(rt − µ)2

σ2
j,t

+ log σ2
j,t

)
d∑

i=1
πt|n (κ(i, j)) (3.10)
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Using the footnote 10 of Francq and Zakoian (2019), we deduce that maximisation of A2(·) :

m̄j,i =
∑n

t=1 Pθ(k),π(k) {∆t = κ(i, j) | r1, . . . , rn}∑n
t=1 Pθ(k),π(k)

{
∆̃t = i | r1, . . . , rn

}
=

∑n
t=1 Pθ(k),π(k) {∆t = κ(i, j) | r1, . . . , rn}∑n

t=1
∑q

j=1 Pθ(k),π(k) {∆t = κ(i, j) | r1, . . . , rn}

m̄j,i =
∑n

t=1 πt|n (κ(i, j))∑n
t=1
∑q

j=1 πt|n (κ(i, j)) (3.11)

Similarly, A3(·) yields :

p̄i,j =
∑n

t=2 Pθ(k),π(k)

{
∆̃t−1 = i, ∆̃t = j | r1, . . . , rn

}∑n
t=2 Pθ(k),π(k)

{
∆̃t−1 = i | r1, . . . , rn

}
=
∑n

t=2
∑q

k=1
∑q

l=1 Pθ(k),π(k) {∆t−1 = κ(i, k),∆t = κ(j, l) | r1, . . . , rn}∑n
t=2
∑q

l=1 Pθ(k),π(k) {∆t−1 = κ(i, l) | r1, . . . , rn}

p̄i,j =
∑n

t=2
∑q

k,l=1 πt−1,t|n (κ(i, k), κ(j, l))∑n
t=2
∑q

l=1 πt|n (κ(i, l)) (3.12)

and A4(·) implies :

π̄0(i) = Pθ(k),π(k)

{
∆̃1 = i | r1, . . . , rn

}
=

q∑
j=1

Pθ(k),π(k) {∆1 = κ(i, j) | r1, . . . , rn}

π̄0(i) =
q∑

j=1
πt|n (κ(i, j)) (3.13)

Remark 3.1. Here, only A1 needs to be optimized, the other terms can be found analytically once
smoothed probabilities πt|n and πt−1,t|n are known.

3.5 Computation of Smoothed Probabilities:

The Markov property entails that, given ∆t, the observations rt, rt+1, . . . do not convey information
on ∆t−1. We hence have

P (∆t−1 = i | ∆t = j, r1, . . . , rn) = P (∆t−1 = i | ∆t = j, r1, . . . , rt−1)

and

πt−1,t|n(i, j) = P (∆t−1 = i | ∆t = j, r1, . . . , rn)πt|n(j) =
pi,jπt−1|t−1(i)πt|n(j)

πt|t−1(j) .

It remains to compute the smoothed probabilities for t = n, n− 1, . . . , 2 given by

πt−1|n(i) =
b∑

j=1
πt−1,t|n(i, j) =

b∑
j=1

pi,jπt−1|t−1(i)πt|n(j)
πt|t−1(j)
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3.6 Summary of the Algorithm

Algorithm 1 Summary of the Algorithm

Initialize θ̂ = (µ, (ωi, αi)i≤q, (βi,j)i,j≤q), (mj,i) = (P(δ1 = j | ∆̃1 = i)) pi,j = P(∆̃2 = j | ∆̃1 = i),
π̃ =

(
P(∆̃1 = 1), . . . ,P(∆̃1 = d)

)′
,

while Not consistent do
Step 1: Compute P and π1|0 = π by (3.2). For t = 1 to n, compute ft|t−1 by (3.6) and
update:  πt|t =

πt|t−1 ⊙ ft|t−1∑
i

(
πt|t−1 ⊙ ft|t−1

)
i

πt+1|t = P′πt|t

Step 2: For t = n to 2, compute smoothed probabilities πt|n and πt−1,t|n using the recurrent
formula: 

πt−1|n(i) =
b∑

j=1

pi,jπt−1|t−1(i)πt|n(j)
πt|t−1(j)

πt−1,t|n(i, j) =
pi,jπt−1|t−1(i)πt|n(j)

πt|t−1(j)

Step 3: Using (3.10), (3.11), (3.12) and (3.13), replace the previous values of the parameters
by:

θ̂ = θ̄

mj,i = m̄j,i.

pi,j = p̄i,j ,

π̃ = π̄,

end

Starting from an initial value θ̂, the above equations allow us to obtain a sequence of estimators(
θ(k),π(k)

)
k

which increase the likelihood. In practice, the sequence converges rapidly to the
estimator. We derived in appendix A.4 the gradient to accelerate the minimization of A1.

3.7 Numerical complexity

For each iteration of the algorithm, knowing that d and q are constants, we can note that the
complexity of step 1 and step 2 involving the equations (3.4), (3.6), and (3.7) is O(n). In step 3,
the computation of m̄i,j , p̄i,j , and π̄ are also in O(n). Besides, the computation of θ̄ has the same
complexity as calibrating a classical GARCH model. With GARCH optimization predominant
to the others, we can deduce that the overall complexity, with Ni the number of iterations until
convergence, is :

O(Ni ∗GARCH) (3.14)

In our numerical application, for a sample of approximately 5000 observations, 20 iterations
were sufficient to achieve convergence. It is important to notice that, only an update of θ is
needed once a first optimum for the others is found, which reduce the complexity in practice to
a simple GARCH. If an important change of regime structure is observed like a new crisis, a full
re-calibration will then have to be done.
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4 Numerical experiments

In this section, the cross-dependency parameters (βij , i ̸= j) are set to zero. As observed by
Haas et al. (2004a), these terms don’t lead to significant improvements in practice. Thus, without
ambiguity, we rename β = (βi,i)i. Besides, we chose p = q = 2 as a good trade-off between efficiency
and time-simulation. Finally, we decided to fix µ for both MS-NM-GARCH and GARCH to an
empirical value given our case study focus on volatility regardless of the level of this parameter.

4.1 Impact of initialization

The use of the EM algorithm technique requires an initialization. We observed that when dealing
with real financial data, it’s better to initialize with transition matrix and mixture coefficients
having high-value diagonals, with m1,1 > m2,2, p1,1 > p2,2; as for the parameters in Table 1. We
will refer to these parameters as "type A Parameter". An explanation of these parameter forms
can be found in the section below. We also remark in the estimation procedure that it isn’t the
specific values of the chosen Type A parameters that are important but solely their properties
listed above. In Figure 1, we present the value of − logL with CAC 40 data, from 1990 to 2014,
at each iteration of the algorithm with Type A and five other random initializations.
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20 22 24 26 28 30
Number of iterations
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10254
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10258

10260

10262
Iterations from 20 to 30
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Figure 1 MS(2)-NM(2)-GARCH Loglikelihood with daily CAC40 returns.

4.2 Model parameters after calibration

In Table 1 and 2, we present the fitting parameters on the daily CAC 40 log-returns from 2007
to 2016. We remark that the NM-MS-GARCH acts as a generalization of the GARCH model.
Indeed, parameters of the first state are similar to the classical GARCH whereas the other state
reflects the crisis period of 2008. Besides, we see that the component volatility (σ1,t) of financial
returns tends to capture persistency and long memory volatilities by having a very high β (> 0.8)
and very low ω and α. This form implies a component that is insensitive to the past return
and converges almost to an unconditional volatility component. On the other hand, the second
component presents relatively high values of ω and α, and a low β (< 0.7). This implies a
component with low memory and high sensitivity to variations in the past return, like during
crisis. The matrix P defines the persistence of each state and as expected, the system converges
to the steady state. Finally the matrix M shows that the steady state acts essentially as a simple
GARCH (m1,2 negligible) whereas the crisis state acts as a NM-GARCH (m2,1 non negligible)
with possible excess of Kurtosis.

Remark 4.1. When q > 2 or d > 2, the same phenomenon is observed empirically. This modeling
allows interpreting (m1,i)i as parameters of persistence and (mq,i)i as crisis factors. The other
(mj,i)i smooth the effect with intermediate levels and allow additional degrees of freedom for skew
and kurtosis fitting.
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µ ω α β

0.04 0.03 0.07 0.89 0.00

0.04 1.03 0.44 0.00 0.67

M =
0.93 0.07

0.35 0.65
P =

0.99 0.01

0.11 0.89

Table 1 Parameters estimated from with a MS(2)-NM(2)-GARCH model.

µ ω α β

0.04 0.07 0.11 0.86

Table 2 Parameters estimated with a GARCH(1,1) model.

Remark 4.2. In this numerical application, we obtained directly a good enough calibration. How-
ever, if needed, the model could be constrained to reduce the number of parameters. One simple
way is to fix m1,1 = 1. Besides, one should take care to always get values high enough for β1,1
and α2 in order not to reduce the model to a classical GARCH.
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4.3 Return Simulation

Without further researches, the easiest way to simulate first moments for the NM-MS-GARCH
model is with Monte Carlo approach.

We first compute πt|t = (P(∆t = i | rt, . . . , r1))i using the Hamilton filter and simulate 10, 000
trajectories of ∆t then rt (3.1) without re-calibration. We noted in practice that 10,000 trajectories
are enough to guarantee at most 5% of error.

4.4 Conditional volatility and density

In Figures 2 and 3, we have plotted the CAC 40 realized volatility curves (
√∑T

k=0 r
2
t−k)t, the

forecast one (Et

√∑T +1
k=1 r

2
t+k)t, as well as the Hamilton Filter response from February 2020 to

April 2020 ; period corresponding to the COVID-19 impact on financial markets.
We observe with the Hamilton Filter that high probability reflects quite well period of high

volatility. The punctual peak in 22.03 is not fully detected though but when we look at the weekly
volatility figure, we can see that on average the perturbation is not high enough. Furthermore,
NM-MS-GARCH model compared to GARCH one gives advantage only during stress periods,
when kurtosis is needed, otherwise we note that both models are equivalent. Finally, we plotted
densities in Figure 4 to emphasize our contribution in term of percentile estimation improvement
for the class of GARCH models.
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Figure 2 One-day absolute return and forecast of conditional volatility on CAC40 with NM(2)-
MS(2)-GARCH and GARCH(1,1) model.
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Figure 3 One-week realized volatility and forecast of realized conditional volatility on CAC40
with NM(2)-MS(2)-GARCH and GARCH(1,1) model.
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Figure 4 One-week conditional density on CAC40 with NM(2)-MS(2)-GARCH and
GARCH(1,1) model in high and low volatility periods



 

 

 

 

 

              5 Conclusion and further research

In this paper, we introduce a Markov-switching Normal-mixture GARCH model in which the
conditional volatility is driven by both a Markov switching sequence and innovations with normal-
mixture distributions. We derive the necessary and sufficient conditions for the existence of strictly
stationary and second-order stationary solutions. To our knowledge, we have also established, for
the first time, the strong consistency of the maximum likelihood estimator for a Markov switching
model with a pure GARCH-type component.

We apply this model on a data set of CAC 40 returns and show that this new model gives better
performance during crisis period for a similar level of calibration time. Indeed, it is well known
that simple GARCH models cannot generate and maintain for too long high level of volatility due
to their high persistence factor, entailing an under estimated risk in portfolio allocation. In our
study, we show how to mitigate these issues without additional complexity. On one hand, the NM
feature can create excess of kurtosis implying higher value of extreme percentiles. On the other
hand, the MS feature can produce long period of high volatility if observed during the calibration
and amplify the NM’s effect. Thus, this new model makes a better monitoring of risk in tactical
portfolio optimization and allows the use of indicators based on percentile like Value At Risk.

Besides, we derived a simple algorithm to calibrate the model and show that once the transition
matrices are fitted, the complexity is equivalent to a simple GARCH model. The overall complexity
is empirically less than 20 times a GARCH one. In our study case, we obtained a good calibration
quite quickly. However, if needed, one can constraint the model parameters to accelerate the
calibration.

Finally, a topic left to be addressed is the generation of first moments (mean, variance, skew
and kurtosis) and percentiles without use of Monte Carlo. Nevertheless, the natural extension to
correlated assets, trivial with Monte Carlo, may add significant complications to another approach.



 

 

 

 

 

              

References
Carol Alexander and Emese Lazar. Normal mixture garch (1, 1): Applications to exchange rate modelling.

Journal of Applied Econometrics, 21(3):307–336, 2006.

István Berkes, Lajos Horváth, and Piotr Kokoszka. GARCH processes: structure and estimation.
Bernoulli, 9(2):201 – 227, 2003. doi: 10.3150/bj/1068128975. URL https://doi.org/10.3150/bj/
1068128975.

Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3):
307–327, 1986.

Jun Cai. A markov model of switching-regime arch. Journal of Business & Economic Statistics, 12(3):
309–316, 1994.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data via
the em algorithm. Journal of the royal statistical society: series B (methodological), 39(1):1–22, 1977.

Randal Douc, Eric Moulines, and Tobias Rydén. Asymptotic properties of the maximum likelihood
estimator in autoregressive models with markov regime. 2004.

Robert F Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of united
kingdom inflation. Econometrica: Journal of the econometric society, pages 987–1007, 1982.

Robert F Engle and Jose Gonzalo Rangel. The spline-garch model for low-frequency volatility and its
global macroeconomic causes. The review of financial studies, 21(3):1187–1222, 2008.

Robert F Engle, Eric Ghysels, and Bumjean Sohn. Stock market volatility and macroeconomic funda-
mentals. Review of Economics and Statistics, 95(3):776–797, 2013.

Christian Francq and Jean-Michel Zakoian. Maximum likelihood estimation of pure garch and arma-garch
processes. Bernoulli, 10(4):605–637, 2004.

Christian Francq and Jean-Michel Zakoian. GARCH models: structure, statistical inference and financial
applications. John Wiley & Sons, 2019.

Christian Francq, Michel Roussignol, and Jean-Michel Zakoian. Conditional heteroskedasticity driven by
hidden markov chains. Journal of Time Series Analysis, 22(2):197–220, 2001.

Markus Haas, Stefan Mittnik, and Marc S Paolella. Mixed normal conditional heteroskedasticity. Journal
of financial Econometrics, 2(2):211–250, 2004a.

Markus Haas, Stefan Mittnik, and Marc S Paolella. A new approach to markov-switching garch models.
Journal of financial Econometrics, 2(4):493–530, 2004b.

James D Hamilton and Raul Susmel. Autoregressive conditional heteroskedasticity and changes in regime.
Journal of econometrics, 64(1-2):307–333, 1994.

Ken Johnston and Elton Scott. Garch models and the stochastic process underlying exchange rate price
changes. Journal of Financial and Strategic Decisions, 13(2):13–24, 2000.

Baye Matar Kandji. On the growth rate of superadditive processes and the stability of functional garch
models. 2024.

J. F. C. Kingman. Subadditive Ergodic Theory. The Annals of Probability, 1:883 – 899, 1973.

Gary GJ Lee and Robert F Engle. A permanent and transitory component model of stock return volatility.
Available at SSRN 5848, 1993.

Taewook Lee and Sangyeol Lee. Normal mixture quasi-maximum likelihood estimator for garch models.
Scandinavian Journal of Statistics, 36(1):157–170, 2009.

Daniel B Nelson. Asymptotic filtering theory for multivariate arch models. Journal of Econometrics, 71
(1-2):1–47, 1996.

Peter M Robinson. Testing for strong serial correlation and dynamic conditional heteroskedasticity in
multiple regression. Journal of Econometrics, 47(1):67–84, 1991.

Jean-Michel Zakoian. Threshold heteroskedastic models. Journal of Economic Dynamics and control, 18
(5):931–955, 1994.

16

https://doi.org/10.3150/bj/1068128975
https://doi.org/10.3150/bj/1068128975


 

 

 

 

 

              

A Appendix: Complementary Proofs

A.1 A decomposition lemma for random variables

Lemma A.1. Let S = (Ω,A,P) be a probability space. Let X be a real-valued random variable,
and η be a Rn random variable. Let f be a measurable function from Rn to R. If X and f(η)
have the same distribution, then: If S sufficiently rich (we can enrich it if necessary), then there
exists a random variable η′ with the distribution of η such that X = f(η′) a.s.

Proof. Let κ : R × B(Rn) → [0, 1] be the regular conditional probability distribution of η given
f(η). Let U1, U2, · · · , Un n iid uniform distribution on [0, 1], independent of X and η 2. By
standard construction 3, for all f(η)ω there exists a measurable function g(f(η)ω, ·) from Rn to
Rn such that g(f(η), (Ui)i≤n) | f(η) has κ(f(η), ·) as (conditional) distribution. It follows by the
definition of κ that f (g(f(η), (Ui)i≤n)) = f(η) a.s. Let η′ = g(X, (Ui)i≤n). Since (X, (Ui)i≤n))
and (f(η), (Ui)i≤n)) have the same distribution then f (η′) = X a.s. and

Now it is reminded to show that η and η′ have the same distribution. The definition of
η′ implies that the regular conditional probability distribution of η′ given X is also κ. For all
A ∈ B(Rn) On has

P(η ∈ A) =
∫
R

κ(x,A)Pf(η) (dx) =
∫
R

κ(x,A)PX (dx) = P(η′ ∈ A),

because f(η) and X have the same distribution. This concludes the proof.

Remark A.1. 1. The condition that X and f(η) are defined in the same probability space is
not restrictive. One can consider that that is not the case, and adapt the proof by considering
(Ui)i≤n independent of f(η) in the space related to f(η) to define g, by extending the space
without restriction if necessary; and also define another iid uniform distribution on [0, 1]
couple (U ′

i)i≤n independent of f(X) in S to define η′, if the space is sufficiently rich or by
extending if necessary.

2. If one can define different n-couples of iid uniform distribution independent of X in S, then
it is clear that our construction is not unique. The uniqueness also depend on the structure
f in the support of η. Indeed, one can remark that if f is bijective in that support, then
κ(x,A) = δf−1(x)(A) which is the distribution of the constant random variable f−1(x) for
fixed x. Thus g doesn’t depend on (Ui)i≤n and is equal to f−1.

A.2 Stationarity

Let us start with some conventions. For all reel matrices A = (aij) and B we say that A > 0
(resp. A ≥ 0) if for all i, j aij > 0 (resp. aij ≥ 0); A > B if A−B > 0.

Proof. We first show that if ρ(Q) < 1 then γ < 0. For all all matrix A = (aij), ∥A∥ =
∑

ij |aij |.
Since B(k)

t has positive elements, for all k, we have

E∥B(k)
t ∥ = ∥EB(k)

t 1′
(d)∥ = ∥E{EB(k)

t 1′
(d)} | (∆̃t)t≥t−k∥ = ∥E{B̃(∆̃t) · · · B̃(∆̃t−k+1)1′

(d)}∥

=
∥∥∥I′QkJ′

∥∥∥ = 1′
(dq)Q

kJ′

where I′ = (Iq, . . . , Iq) is q × dq matrix and J = (π̃11′
(d), . . . , πd1′

(d)). Since ρ(Q) < 1 implies that
limk→+∞

1
k ∥Qk∥ = log ρ(Q) < 0, it follows by the Jensen inequality that γ ≤ limn→+∞

1
k log{E∥B(k)

t ∥} <
0. Thus the existence of a (unique) strictly stationary (and ergodic) solution follows from Theorem
2.1. Let us now compute the variance. By the total variance formula,

var (rt) = E{var
(
rt | (∆̃s)s≤t

)
} + var

(
E{rt | (∆̃s)s≤t}

)
= Eϵ2

t + varµt (A.1)
2The possibility to define these random variables depends on the richness of S, however, one can always use a

product construction to enlarge the probability space if necessary.
3Using the multiplication rule for multivariate distributions and the inverse transformation method.

17



 

 

 

 

 

              

For the first term, by argument already used we have

Eϵ2
t = E(

q∑
k=1

1δt=kσ
2
t,k) =

∞∑
k=0

E{m(∆̃t)B̃(∆̃t−1) · · · B̃(∆̃t−k)ω}

=
∞∑

k=0
1′

(d)ψQ
kz = 1′

(d)ψ (Idq −Q)−1
z

The second part of Eq. (A.1) is easy to compute, this prove the first part of the theorem.
Now suppose that (rt) is a positive second order stationary solution of (2.1). Let P̄ =

∑∞
k=0Q

k.

Since Ert ≥
∑∞

k=0 E{m(∆̃t)B̃(∆̃t−1) · · · B̃(∆̃t−k)ω} =
∑∞

k=0 1′
(d)ψQ

kz, thus this latter sum is
finite. It follows that its reminder (1′

(d)ψQ
kP̄z)k converges to zero. Assumption (i) implies that

P̄ > 0, and by Assumption (ii), supi zi > 0. Thus P̄z > 0. It follows that

(1′
(d)ψQ

k)k converges to zero. (A.2)
Assumption (i) also implies that for all i, j ≤ dq there exists an integer r such that the i, j entry,
Qr

ij , of Qr is strictly positive. Since 1′
(d)ψ has a strictly positive entry, then for all i ≤ dq there

exist ri such that the entry i of 1′
(d)ψQ

ri is strictly positive. Thus 1′
(d)ψQ

r > 0. Rewriting
1′

(d)ψQ
k by 1′

(d)ψQ
riQk−ri for all i, it follows from Eq. (A.2) that the row i of Qk converges to

0 for all i ≤ dq. Therefore, Qk converges to 0, thus Fekete’s lemma implies that ρ(Q) < 1.

A.3 Consistency of the Maximum likelihood estimator

The parameter space Θ is compact, compatible with the following conditions: for all θ ∈ Θ, the
associated Markov chain (∆̃t) is irreducible and aperiodic, U > 0, mini ωi > 0, and ρ(β) < 1. It
is assumed that the true parameter value θ0 belongs to Θ, and that ρ(Q(θ0)) < 1 .

Let πt|·(i) = P(∆t = i | rt−1, rt−2, . . .), gm,θ(· | rt−m, rt−m−1, . . .) be the density function
of (rt, . . . , rt−m+1) given the σ-field generated by rt−m, rt−m−1, . . ., and fθ,t,i(·) be the density
function of rt given the σ-field generated by ∆t = i, rt−1, rt−2, . . .. Without ambiguity, define
gθ (rt | rt−1, rt−2, . . .) := g1,θ (rt | rt−1, rt−2, . . .)

The following identifiability condition is needed for the strong consistency of (θ̂n).
Assumption A: For all θ ∈ Θ, if gθ (rt | rt−1, rt−2, . . .) = gθ0 (rt | rt−1, rt−2, . . .) Pθ0− a.s,

then θ = θ0.

Theorem A.1. Under Assumption A, (θ̂n) converges almost surely to θ0 as n → ∞.

The proof of the consistency of the maximum likelihood estimator relies on the following
lemmas.

Lemma A.2. For all i, we have

inf
θ∈Θ

πt|·(i) > 0 Pθ0-a.s.

Proof. By the same argument used to establish (3.7), we have

πt|· = P′ fθ,t−1(rt−1)
1′
{
fθ,t−1(rt−1) ⊙ πt−1|·

} ⊙ πt−1|· ≥ Pt−1πt−1|·, (A.3)

where Pt(i, j) = P′
i,j

fθ,t−1,j(rt−1)
(1/b) maxk{fθ,t−1,k(rt−1)} , because maxi πt−1|·(i) > 1/b.

The irreducibility and aperiodicity assumptions, together with the condition U > 0, imply that
(∆t) is primitive; i.e., for all θ′, there exists a strictly positive integer k such that (P′)k(θ′) > 0.
Since for all j and θ, fθ,t−1,j(·) are strictly positive functions, it follows that

k∏
l=1

Pt−1−l(θ′) > 0.
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From (A.3), we have

πt|· ≥

(
k∏

l=1
Pt−1−l

)
πt−1−k|·.

Since maxi πt−1−k|·(i) > 1/b, and the components of Pt are continuous in θ and strictly positive
at θ′, it follows that for all θ′ there exists a continuous function h (depending on θ′) such that
πt|· ≥ h and h(θ′) > 0. By continuity, there exists an open ball Vθ′ centered at θ′ such that
infθ∈Vθ′ ∩Θ h(θ) > 0, and hence infθ∈Vθ′ ∩Θ πt|· > 0.

By compactness of Θ, there exists a finite sub-cover of the form Vθ1 , Vθ2 , . . . , VθM
. It follows

that
inf
θ∈Θ

πt|· ≥ min
l≤M

inf
θ∈Vθl

∩Θ
πt|· > 0.

Lemma A.3. Let L̃θ(·) be the density of (r1, . . . , rn) given the σ-field generated by r0, r−1, . . . ,

lim
n→∞

1
n

sup
θ∈Θ

∣∣∣∣log L̃θ (r1, . . . , rn)
Lθ (r1, . . . , rn)

∣∣∣∣ = 0 Pθ0 − a.s

Proof. Let us first rewrite the likelihood in the Matrix product formula introduced by Francq
et al. (2001).

Let 1 = (1, . . . , 1)′ ∈ Rb, π0 = (π0(1), . . . , π0(b))′ ∈ Rb and

Mθ (rt, . . . , r1) =
p1,1ϕ1 (rt, . . . , r1) p2,1ϕ1 (rt, . . . , r1) · · · pb,1ϕ1 (rt, . . . , r1)
p1,2ϕ2 (rt, . . . , r1) p2,2ϕ2 (rt, . . . , r1) · · · pb,2ϕ2 (rt, . . . , r1)

...
...

...
p1,bϕb (rt, . . . , r1) p2,bϕb (rt, . . . , r1) · · · pb,bϕb (rt, . . . , r1)

 .

One can check that,

Lθ (r1, . . . , rn) = 1′

{
n∏

k=1
Mθ (rn, . . . , r1)

}
π0. (A.4)

The expression of L̃θ (r1, . . . , rn) is similar to that of Lθ (r1, . . . , rn) in (A.4). It is obtained from
Lθ (r1, . . . , rn) by replacing π0(i) with π0|·(i) and ϕi (rt, . . . , r1) with ϕ̃i (rt, . . . , r1, r0, . . .), where
ϕ̃i is defined by substituting (σt) with (σ̃t), the strictly stationary, ergodic, and non-anticipative
solution of (3.4), in the expression of ϕi (rt, . . . , r1).

Let us define L̄θ (r1, . . . , rn) by substituting π0 with π0|· in the expression of Lθ (r1, . . . , rn)
in (A.4). We have

1
n

sup
θ∈Θ

∣∣∣∣log L̃θ (r1, . . . , rn)
Lθ (r1, . . . , rn)

∣∣∣∣ ≤ 1
n

sup
θ∈Θ

∣∣∣∣log L̃θ (r1, . . . , rn)
L̄θ (r1, . . . , rn)

∣∣∣∣+ 1
n

sup
θ∈Θ

∣∣∣∣log L̄θ (r1, . . . , rn)
Lθ (r1, . . . , rn)

∣∣∣∣ .
The goal is to prove that the two terms on the right-hand side converge to 0.

sup
θ∈Θ

∣∣∣∣log L̄θ (r1, . . . , rn)
Lθ (r1, . . . , rn)

∣∣∣∣ ≤ sup
θ∈Θ

max
i≤q

∣∣∣∣log π0(i)
π0|·(i)

∣∣∣∣
≤ sup

θ∈Θ
max
i≤q

(
|log π0(i)| +

∣∣log π0|·(i)
∣∣) .

By the compactness of Θ, Lemma A.2, and the condition π0(i) > 0 for all i, the terms on the
right-hand side of the inequality above are finite. Since this upper bound does not depend on n,
the result follows by dividing by n and taking the limit.
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Now let us show that

lim
n→∞

1
n

sup
θ∈Θ

∣∣∣∣log L̃θ(r1, . . . , rn)
Lθ(r1, . . . , rn)

∣∣∣∣ = 0 Pθ0 -a.s..

We have

sup
θ∈Θ

1
n

∣∣∣∣log L̃θ(r1, . . . , rn)
Lθ(r1, . . . , rn)

∣∣∣∣ ≤ sup
θ∈Θ

1
n

n∑
t=1

max
j

∣∣log ϕ̃j(rt, . . .) − log ϕj(rt, . . . , r1)
∣∣

≤ 1
2n

n∑
t=1

sup
θ∈Θ

(
(rt − µ)2 max

j

∣∣∣∣∣ 1
σ2

j,t

− 1
σ̃2

j,t

∣∣∣∣+ max
j

∣∣∣∣ log
σ̃2

j,t

σ2
j,t

∣∣∣∣∣
)

For all t, we have σ̃2
t −σ2

t = Bt(σ̃2
0 −σ2

0). Applying the inequality | log(x/y)| ≤ |x−y|
x∨y for x, y > 0,

we deduce
sup
θ∈Θ

1
n

∣∣∣∣log L̃θ(r1, . . . , rn)
Lθ(r1, . . . , rn)

∣∣∣∣ ≤ K

n

n∑
t=1

[
(rt − µ)2 + 1

]
ρt,

where K is an F0-measurable random variable (independent of t) and ρ = supθ∈Θ ρ(B) < 1 due
to the compactness of Θ. Here, ρ denotes the spectral radius function.

It is well known that for a stationary sequence (xn) such that E|x0|s < ∞ for some s > 0, we
have ρnxn → 0 as n → ∞ (see Francq and Zakoian (2004, Proof of Theorem 2.1)). Thus, since
Er2

0 < ∞, the result follows the Cesàro lemma.

Lemma A.4. For all θ1 ∈ Θ, different from θ0, there exists a neighborhood V (θ1) of θ such that

lim sup
n→∞

1
n

sup
θ∈V (θ1)

log L̃θ (r1, . . . , rn)
L̃θ0 (r1, . . . , rn)

< 0 Pθ0-a.s.

Proof. To prove this lemma, we use the expression of the log-likelihood in (A.5), where L̃θ is
obtained by initializing the filter (3.7) with π0|·(i) and (σ̃t) is used instead of (σt) to compute the
conditional density evaluated at rt: fθ,t,i(rt), as in the expression (3.5).

We then have
L̃θ =

n∑
t=1

log gθ (rt | rt−1, rt−2, . . .) (A.5)

where

gθ (rt | rt−1, rt−2, . . .) =
b∑

i=1
πt|·(i)fθ,t,i(rt).

For any θ ∈ Θ and any positive integer k, let Vk(θ) be the open ball of center θ and radius
1/k. Since Er2

0 < ∞, it is easy to show that

E sup
θ∈Θ

log |gθ (rt | rt−1, rt−2, . . .)| ≤ ∞.

Thus, by the ergodic theorem followed by the dominated convergence theorem, we have

lim
k→∞

lim sup
n→∞

1
n

sup
θ∈Vk(θ1)

log L̃θ (r1, . . . , rn)
L̃θ0 (r1, . . . , rn)

= lim
k→∞

E sup
θ∈Vk(θ1)

log gθ (rt | rt−1, rt−2, . . .)
gθ0 (rt | rt−1, rt−2, . . .)

Pθ0-a.s.

= E log gθ1 (rt | rt−1, rt−2, . . .)
gθ0 (rt | rt−1, rt−2, . . .)

.

By Jensen’s inequality,

Eθ0 log gθ1 (rt | rt−1, rt−2, . . .)
gθ0 (rt | rt−1, rt−2, . . .)

< log Eθ0

gθ1 (rt | rt−1, rt−2, . . .)
gθ0 (rt | rt−1, rt−2, . . .)

= 0.

This concludes the proof.

Proof of Theorem A.1. The result follows from Lemma A.4, Lemma A.3, and the compactness of
Θ.

20



 

 

 

 

 

              

A.4 The Gradient computation

Recall that only A1 depends on θ̂, the parameter related to the components’ volatilities.
∂A1
∂θ̂i

=
∑n

t=1
∑q

j=1 Pθ(k),π(k) {δt = j | r1, . . . , rn} ∂
∂θ̂i

(
(rt−µ)2

σ2
j,t

+ log σ2
j,t

)
One has:

• ∂
∂µ

(
(rt−µ)2

σ2
j,t

+ log σ2
j,t

)
= − 2(rt−µ)

σ2
j,t

− (rt−µ)2 ∂
∂µ σ2

j,t

σ4
j,t

+
∂

∂µ σ2
j,t

σ2
j,t

where ( ∂
∂µσj,t)j are defined re-

cursively by

∂

∂µ
σ2

t = ∂

∂µ
ct +B

∂

∂µ
σ2

t−1, and ∂

∂µ
ct = (−2αi(rt−1 − µ))i.

• ∂
∂ωi

(
(rt−µ)2

σ2
j,t

+ log σ2
j,t

)
= −

(rt−µ)2 ∂
∂ωi

σ2
j,t

σ4
j,t

+
∂

∂ωi
σ2

j,t

σ2
j,t

where ( ∂
∂ωi

σj,t)j are defined recursively
by

∂

∂ωi
σ2

t = ∂

∂ωi
ct +B

∂

∂ωi
σ2

t−1, and ( ∂

∂ωi
ct)i = 1, ( ∂

∂ωi
ct)j = 0 if j ̸= i.

• ∂
∂αi

(
(rt−µ)2

σ2
j,t

+ log σ2
j,t

)
= −

(rt−µ)2 ∂
∂αi

σ2
j,t

σ4
j,t

+
∂

∂αi
σ2

j,t

σ2
j,t

where ( ∂
∂αi

σj,t)j are defined recursively
by

∂

∂αi
σ2

t = ∂

∂αi
ct +B

∂

∂αi
σ2

t−1, and ( ∂

∂αi
ct)i = (rt−1 − µ)2, ( ∂

∂αi
ct)j = 0 if j ̸= i.

• ∂
∂βi,k

(
(rt−µ)2

σ2
j,t

+ log σ2
j,t

)
= −

(rt−µ)2 ∂
∂βi,k

σ2
j,t

σ4
j,t

+
∂

∂βi,k
σ2

j,t

σ2
j,t

where ( ∂
∂βi,k

σj,t)j are defined recur-
sively by

∂

∂βi,k
σ2

t = B(i,k)σ2
t−1 +B

∂

∂βi,k
σ2

t−1,

where B(i,k) is a q × q matrix with (i, k) th element 1 and all other elements 0.
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