Recherche & Développement Toutes les publications MLOps – Comment rendre opérationnel un modèle de machine learning ?

MLOps – Comment rendre opérationnel un modèle de machine learning ?


ETUDE INTERNE
AUTEUR : MARVIN SUZANNE

 

La complexité et les challenges induits par le déploiement de systèmes de machine learning (ML) sont parfois sous-estimés au profit des efforts engagés sur la phase de développement.

Hors, les applications à base de ML sont différentes des logiciels standards dans la mesure où leur performance repose essentiellement sur de la donnée.

Comme les données évoluent en permanence, les modèles en production doivent être monitorés, re-entraînés et redéployés, afin de garantir un niveau de performance similaire en production et en phase de développement.

Cette note donne une vision synthétique des différentes étapes fonctionnelles d’un projet ML : Data Engineering, Model Engineering et Déploiement.

 

 

Télécharger le PDF

Publications récentes

#news

24/04/2023

Analyse ESG assistée par NLP : cas pratique sur données et modèles open-source

Lire plus

24/04/2023

BENCHMARK | Des solutions de data anonymisation

Lire plus

24/04/2023

Gestion du risque des crypto-actifs par analyse on-chain

Lire plus