Recherche & Développement Toutes les publications Benchmark sur la corrélation et l’importance des variables : guide des modèles de ML supervisé

Benchmark sur la corrélation et l’importance des variables : guide des modèles de ML supervisé


Télécharger le fichier

ETUDE INTERNE
AUTEURS :  ERNESTO LOPEZ FUNE, VALENTIN MESSINA, AMANDE EDO

Le développement de l’intelligence artificielle (IA) soulève des enjeux majeurs d’explicabilité des modèles de machine learning (ML). Ce benchmark explore les méthodes de mesure de l’importance des variables dans les modèles supervisés, en utilisant l’analyse de corrélation avec des techniques post-hoc comme les valeurs de Shapley et LIME. Nous démontrons que l’approche combinée d’analyse de corrélation et de mesures d’importance des variables permet de mieux comprendre et valider les prédictions des modèles complexes. Les packages Eli5, SHAP, et LIME sont utilisés pour illustrer ces méthodes, en mettant en lumière leurs avantages et limites face aux variables explicatives corrélées entre elles.

Télécharger le fichier

Publications récentes

#news

Gestion Des Risques De Biodiversité Pauline RICHE

31/07/2025

Gestion des risques de biodiversité : l’éclairage du nouveau rapport de l’EIOPA pour les assureurs européens

Lire plus
Benchmark IFRS 17 Edition 2025 Nexialog

10/07/2025

Rapport IFRS 17 – La comparabilité sous IFRS 17 : objectif atteint ?

Lire plus
Rapport SFCR 2024 Tendances Du Marché IARD

08/07/2025

Rapport SFCR 2024 – Les tendances du marché IARD

Lire plus