Scorecards Backtesting


Télécharger le fichier
ETUDE INTERNE
AUTEUR : HAMZA EL YOUMNI & AZIZ MAAOUIA

 

In the realm of credit risk management, financial institutions are used to assess borrowers’ repayment capacity through the construction of a credit scoring. To do so, they commonly rely on logistic regression models due to their simplicity and their clear interpretability. However, recent research has highlighted that logistic regression may be less performing than alternative machine learning algorithms.

Although these algorithms offer higher prediction performance, their outputs often lack explicit interpretability.

To address this issue, we propose in this paper to use a interpretable algorithm, the Catboost model. Nevertheless, the classic framework of backtesting used by financial institution is not fully adapted to assess this new scoring framework, particularly in terms of effectively controlling the contributions of variables. To accommodate this novel approach, we propose and compare two methodologies to adapt the standard backtesting.

Télécharger le fichier

Publications récentes

#news

Illustration SFDR 2.0 pour gestionnaires d’actifs : trois catégories de fonds durables, transition et ESG basique, guide de conformité et reporting ESG

05/12/2025

SFDR 2.0 : Quels impacts pour les gestionnaires d’actifs ?

Lire plus

03/12/2025

Benchmark 2025 des rapports Article 29 LEC

Lire plus
Note technique – Générateur de Scénarios Économiques (GSE)

27/11/2025

Note technique – Générateur de Scénarios Économiques (GSE)

Lire plus
}) })