Recherche & Développement Toutes les publications MLOps – Comment rendre opérationnel un modèle de machine learning ?

MLOps – Comment rendre opérationnel un modèle de machine learning ?


Télécharger le fichier
ETUDE INTERNE
AUTEUR : MARVIN SUZANNE

 

La complexité et les challenges induits par le déploiement de systèmes de machine learning (ML) sont parfois sous-estimés au profit des efforts engagés sur la phase de développement.

Hors, les applications à base de ML sont différentes des logiciels standards dans la mesure où leur performance repose essentiellement sur de la donnée.

Comme les données évoluent en permanence, les modèles en production doivent être monitorés, re-entraînés et redéployés, afin de garantir un niveau de performance similaire en production et en phase de développement.

Cette note donne une vision synthétique des différentes étapes fonctionnelles d’un projet ML : Data Engineering, Model Engineering et Déploiement.

 

 

Télécharger le fichier

Publications récentes

#news

Avis De L’EIOPA Consultation Sur Le Traitement Prudentiel Des Investissements En Crypto Actifs Note D'analyse

08/08/2025

Avis de l’EIOPA : consultation sur le traitement prudentiel des investissements en crypto-actifs

Lire plus
Gestion Des Risques De Biodiversité Pauline RICHE

31/07/2025

Gestion des risques de biodiversité : l’éclairage du nouveau rapport de l’EIOPA pour les assureurs européens

Lire plus
Benchmark IFRS 17 Edition 2025 Nexialog

10/07/2025

Rapport IFRS 17 – La comparabilité sous IFRS 17 : objectif atteint ?

Lire plus