Recherche & Développement Toutes les publications MLOps – Comment rendre opérationnel un modèle de machine learning ?

MLOps – Comment rendre opérationnel un modèle de machine learning ?


Télécharger le fichier
ETUDE INTERNE
AUTEUR : MARVIN SUZANNE

 

La complexité et les challenges induits par le déploiement de systèmes de machine learning (ML) sont parfois sous-estimés au profit des efforts engagés sur la phase de développement.

Hors, les applications à base de ML sont différentes des logiciels standards dans la mesure où leur performance repose essentiellement sur de la donnée.

Comme les données évoluent en permanence, les modèles en production doivent être monitorés, re-entraînés et redéployés, afin de garantir un niveau de performance similaire en production et en phase de développement.

Cette note donne une vision synthétique des différentes étapes fonctionnelles d’un projet ML : Data Engineering, Model Engineering et Déploiement.

 

 

Télécharger le fichier

Publications récentes

#news

S’adapter à +4°C un bon réflexe, mais pas encore la bonne méthode

02/10/2025

S’adapter à +4°C : un bon réflexe, mais pas encore la bonne méthode

Lire plus

30/09/2025

Baromètre Allocations des actifs des assureurs Européens

Lire plus
Titrisation : vers un assouplissement de la règlementation européenne

24/09/2025

Titrisation : vers un assouplissement de la règlementation européenne

Lire plus