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Résumé
Les Autocallables sont des produits structurés à remboursement anticipé, très
prisés dans la gestion de portefeuille structurée. Leur nature fortement path-
dependent et leur payoff complexe rendent leur valorisation difficile et néces-
sitent l’utilisation de modèles sophistiqués et de techniques numériques avan-
cées (Monte Carlo, PDE). Ce papier propose une étude comparative entre les
approches traditionnelles et récentes en matière de modélisation de la volati-
lité pour ces produits. Dans ce cadre, une attention particulière est portée aux
modèles Local-Stochastic Volatility (LSV) et Rough Heston, qui incarnent res-
pectivement les approches industrielles et les avancées académiques récentes.
Les modèles LSV sont reconnus pour leur capacité à intégrer la dynamique du
sous-jacent tout en assurant une calibration fidèle à la surface de volatilité im-
plicite. Les modèles rough, quant à eux, introduisent une structure de mémoire
longue et de rugosité dans la volatilité, en phase avec les observations empi-
riques sur les marchés. L’objectif est d’évaluer, via une calibration numérique,
si les modèles de volatilité rugueuse offrent une amélioration significative de
la valorisation des Autocallables par rapport aux méthodes LSV établies.

Mots-clés : Autocalls, path-dependent, Local Volatility, Stochastic Volatility,
Local–Stochastic Volatility, Rough Heston, Monte Carlo.
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1 Introduction
Les produits structurés sont des instruments financiers combinant un actif obligataire

avec un ou plusieurs payoffs dérivés equity, permettant d’ajuster le profil rendement-
risque selon les besoins de l’investisseur. Ces produits représentent une part significative
du marché des dérivés equity, particulièrement dans un contexte de taux d’intérêt bas
où leurs coupons élevés les rendent plus attractifs. Les Autocalls constituent une famille
particulière de produits structurés intégrant une option de remboursement anticipé. Le
mécanisme de rappel est activé si, à l’une des dates d’observation prédéfinies Ti, le prix
du sous-jacent ST franchit (ou atteint) un niveau de rappel L , entraînant alors le rem-
boursement du produit et le versement d’un coupon c. Une telle structure nécessite des
modèles capables de capturer fidèlement la dynamique conjointe du sous-jacent et de sa
volatilité.

En une vingtaine d’années, la modélisation des autocalls a évolué vers un compromis
entre exigences de calibration de la VI, fidélité des dynamiques de volatilité et contraintes
numériques. Les années 2000 ont vu s’imposer les modèles locaux et stochastiques, puis
leur synthèse aux modèles stochastic local volatility (LSV), qui a permis une tarification
plus précise et une gestion cohérente du smile de la VI pour des exotiques complexes.
Les limites de ces cadres, en particulier en régimes de volatilité extrême ou liés à des
contraintes numériques de calibrations, ont cependant conduit à explorer des paradigmes
alternatifs. Les modèles à volatilité rugueuse, motivés par des observations microstruc-
turelles, constituent l’une des réponses les plus marquantes de la dernière décennie. En
introduisant une mémoire longue dans la variance, ils améliorent l’ajustement de certains
aspects de la surface implicite (skews courts, etc) et ouvrent des perspectives pour le
pricing de produits dépendants du chemin.

Le modèle de volatilité locale (LV), introduit par Dupire [10] comme extension du cadre
de Black-Scholes [6], reproduit exactement la surface de volatilité implicite (VI) observée
sur le marché à un instant donné. Ce modèle constitue un standard pour la valorisation
des produits dérivés equity vanille (dont le payoff ne dépend que d’une marginale du
sous-jacent à une date de maturité). Cependant, son hypothèse centrale d’une volatilité
déterministe dépendant du temps et du niveau du sous-jacent fige la dynamique future
du smile de la VI, générant des évolutions irréalistes de la volatilité [26]. Cette limitation
rend le modèle inadéquat pour valoriser des produits fortement path-dependent comme
les Autocalls.

Les modèles de volatilité stochastique (SV), e.g. le modèle de Heston [22], introduisent
un facteur de volatilité aléatoire pour générer une dynamique plus réaliste de la surface
implicite. Ces modèles demeurent néanmoins difficiles à calibrer parfaitement : le nombre
limité de paramètres restreint leur capacité à ajuster l’ensemble de la surface de volatilité
implicite, particulièrement sur les maturités courtes.

Pour surmonter les limitations des approches LV et SV, les modèles de volatilité locale-
stochastique (LSV) ont été développés [23], combinant les avantages de chaque classe. Un
modèle LSV correctement calibré permet de valoriser des produits path-dependent de
manière cohérente avec les prix de marché. Ces modèles présentent toutefois des défis
numériques importants : leur calibration est complexe et requiert un grand nombre d’éva-
luations de prix par simulation Monte-Carlo. Ce coût computationnel élevé se retrouve
également lors des simulations, rendant l’utilisation des modèles LSV significativement
plus coûteuse que celle des modèles SV [8].

Plus récemment, une nouvelle classe de modèles a été introduite avec le concept de
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volatilité rugueuse [17]. Ces modèles s’appuient sur l’observation empirique que la vola-
tilité suit une dynamique plus irrégulière que celle modélisée par les processus browniens
classiques, et peut être mieux décrite par des processus fractionnaires à exposant de Hurst
H < 0.5. Le modèle Rough Heston, par exemple, conserve une structure proche du mo-
dèle de Heston tout en incorporant cette rugosité dans la dynamique de la variance. Cette
approche capture plus fidèlement la structure fine de la surface de volatilité implicite, no-
tamment sur les maturités courtes, ainsi que la persistance temporelle observée en données
haute fréquence.

L’intérêt des modèles rugueux réside dans leur cohérence empirique renforcée et leur
potentiel pratique : plusieurs travaux récents (voir [12] et ses références) ont proposé des
méthodes de calibration efficaces rendant leur mise en œuvre envisageable en environne-
ment opérationnel.

Dans ce contexte, la question centrale de ce travail est d’évaluer l’apport des modèles
de volatilité rugueuse par rapport aux approches LSV, largement utilisées dans l’industrie
pour la valorisation des Autocalls. L’étude consiste à établir un benchmark de pricing à
partir d’un modèle LSV, puis à développer et calibrer un modèle Rough Heston afin de
comparer leurs performances en termes de calibrage, de précision de valorisation et de
coût computationnel.

La suite du papier est organisée comme suit : la section 2 présente les fondements
théoriques des modèles LSV et Rough Heston. La section 3 détaille les méthodologies de
calibration développées pour chaque approche. La section 4 expose les résultats obtenus
et leur analyse. Enfin, la section 5 synthétise les apports de cette étude et propose des
perspectives de développement.

2 Modélisation
Cette section présente les différentes classes de modèles de volatilité utilisés pour

la valorisation des produits dérivés equity. L’objectif est de comprendre les limites des
approches traditionnelles et de motiver l’utilisation des modèles de volatilité rugueuse.

2.1 Le modèle de Black-Scholes et ses limites
Le modèle de Black-Scholes [6] constitue le point de départ de la modélisation en

finance quantitative. Le sous-jacent St suit la dynamique :

dSt = rSt dt+ σSt dWt (1)

où r est le taux sans risque, σ la volatilité constante et Wt un mouvement brownien.
Ce modèle fournit une formule fermée pour le prix d’un call européen :

CBS(S0, K, T, σ) = S0 N (d+) −K e−rTN (d−) (2)

avec d± = ln(S0/K)+(r± 1
2σ

2)T
σ

√
T

.
Dès les années 1980, les cotations d’options révèlent que la volatilité implicite varie

selon le strike K et la maturité T . Cette structure, appelée « smile » de volatilité, contredit
l’hypothèse de volatilité constante et nécessite des modèles plus sophistiqués.
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2.2 Modèles de volatilité locale
Le modèle de volatilité locale [10, 9] remplace l’hypothèse de la volatilité constante

par une fonction déterministe σLV(t, S) :

dSt = r St dt+ σLV(t, St)St dWt (3)

La fonction σLV(t, S) est déterminée par la formule de Dupire :

σ2
LV(T,K) = ∂TC(T,K) + r K ∂KC(T,K)

1
2 K

2 ∂2
KKC(T,K) (4)

où C(T,K) est le prix actualisé d’un call de strike K et maturité T .
Ce modèle déterministe présente l’avantage de calibrer exactement la surface de vola-

tilité implicite observée à l’instant initial, reproduisant le smile de volatilité pour chaque
maturité. La calibration s’effectue directement par application de la formule de Dupire sur
une nappe dense de prix de calls et conserve la rapidité des diffusions unidimensionnelles.

Cependant, cet ajustement parfait s’accompagne d’un grand inconvénient. Ce modèle
suppose que la structure actuelle des volatilités implicites reste figée, impliquant des dyna-
miques irréalistes des forward smiles. Dans un modèle LV, le smile futur est essentiellement
aplati par rapport à l’état initial ; la fonction déterministe σ(t, S) tend vers une volati-
lité locale de long terme relativement plate pour les maturités éloignées. Si l’on reprice
des options pour une date future avec le modèle, on obtient un smile quasi constant, ne
reflétant pas la forte variabilité empiriquement observée des smiles dans le temps.

Cette limite devient particulièrement marquée pour les produits exotiques sensibles au
smile futur, comme les options cliquet ou les autocalls comportant de nombreuses dates
d’observation. Par ailleurs, un modèle de volatilité locale ne reproduit pas de manière
explicite l’effet de levier (corrélation empirique négative entre rendements et volatilité,
voir [11]), sauf à l’intégrer indirectement dans la surface calibrée. Il en résulte un risque
de biais de valorisation pour les produits fortement path-dependent. Plus généralement,
un modèle LV tend à sous-estimer le risque d’événements extrêmes, la volatilité étant figée
par la calibration initiale.

2.3 Modèles de volatilité stochastique
Les modèles de volatilité stochastique introduisent un second facteur aléatoire pour

faire évoluer la volatilité dans le temps, surmontant ainsi la rigidité des approches détermi-
nistes. Le modèle de Heston [22] constitue la référence de cette classe, avec la dynamique
suivante :

dSt = r St dt+ √
νt St dW

S
t

dνt = κ(θ − νt) dt+ ξ
√
νt dW

ν
t

d⟨W S,W ν⟩t = ρ dt

(5)

Les paramètres κ (vitesse de retour à la moyenne), θ (variance de long terme), ξ
(volatilité de la volatilité), ρ (corrélation) et ν0 (variance initiale) caractérisent l’évolution
de la variance instantanée selon un processus de type Ornstein-Uhlenbeck avec racine
carrée.

Ces modèles génèrent des dynamiques de smile plus réalistes que l’approche locale. La
volatilité implicite devient une variable aléatoire évoluant avec les conditions de marché,
permettant de reproduire des comportements « sticky delta » (la volatilité implicite asso-
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ciée à un même delta (ou moneyness) reste pratiquement inchangée lorsque le sous-jacent
se déplace, de sorte que le smile “glisse” avec le prix, voir [3]) plutôt qu’une structure
rigide. La corrélation ρ capture l’effet de levier empiriquement observé, où la volatilité
tend à augmenter lors des baisses de marché. En conséquence, les modèles SV évaluent
mieux les produits exotiques dépendant du smile futur, générant des scénarios plausibles
d’évolution de volatilité.

Le modèle de Heston appartient à la classe des processus affines, permettant une
expression semi-fermée de la fonction caractéristique [22] et l’utilisation efficace de la
transformée de Fourier rapide pour la calibration [7]. Cette propriété confère à ce modèle
un avantage computationnel certain par rapport aux approches purement numériques.

Cependant, le modèle de Heston présente des limitations importantes dans la cali-
bration. Avec un nombre restreint de paramètres, ils n’arrivent pas à ajuster l’ensemble
de la surface implicite. Un modèle de Heston unifactoriel reproduit notamment mal la
forte concavité du smile de court terme observée sur les maturités très courtes. La rai-
son fondamentale réside dans le fait que ces modèles markoviens classiques imposent une
structure à terme du skew ATM constante pour les petites valeurs de T (maturité). Cette
caractéristique les empêche de reproduire la pente abrupte (bien approximée par une loi
de puissance, Tα α < 0) du smile observée empiriquement lorsque la maturité tend vers
zéro, voir [17].

Pour améliorer l’ajustement, diverses extensions ont été développées, notamment les
modèles SV avec sauts (modèle de Bates) ou multi-facteurs, ajoutant de la flexibilité au
smile court terme. Malgré ces améliorations, calibrer précisément un modèle SV sur l’en-
semble des maturités et strikes reste difficile. Une limitation supplémentaire des modèles
SV purement markoviens est leur incapacité à reproduire exactement tous les prix vanille :
il subsiste toujours une erreur résiduelle de calibration, ce qui peut s’avérer problématique
pour la couverture des produits exotiques qui requièrent généralement un modèle repro-
duisant exactement le marché vanille.

2.4 Modèles de volatilité locale-stochastique (LSV)
Pour concilier la calibration exacte des options vanille (avantage des modèles LV) et la

dynamique réaliste du smile (avantage des modèles SV), les modèles hybrides stochastique-
local, notés LSV ont été introduits depuis les années 2000 [23, 24]. Un modèle LSV in-
corpore une fonction de volatilité locale ℓ(t, S) ajustée pour assurer l’ajustement exact
des prix vanille, tout en conservant un facteur de volatilité stochastique multiplicatif qui
génère une volatilité instantanée aléatoire :

dSt = r St dt+ ℓ(t, St)
√
νt St dW

S
t (6)

où νt suit un processus stochastique (e.g. Heston) et ℓ(t, S) est la fonction de levier à
déterminer.

Le modèle LSV doit reproduire le modèle LV de sorte que les deux processus aient
des distributions marginales unidimensionnelles identiques et que les prix des options
européennes coïncident pour tous les strikes K et toutes les maturités T . En utilisant
le théorème de Gyöngy [21] (voir Annexe.1), on peut faire correspondre les termes de
diffusion des Eqs. 3 et 6 par :

σLV (t, S) =
√
EQ [ℓ(t, S(t))2ν(t) |S(t) = S]. (7)
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En réarrangeant cette équation, et puisque ℓ(t, S) est une fonction déterministe de t
et S, on obtient l’expression de la fonction de levier :

ℓ(t, S) = σLV (t, S)√
EQ[ν(t) |S(t) = S]

(8)

Les modèles LSV constituent la référence industrielle pour la valorisation des produits
exotiques en equity et de change [20] car ils décrivent simultanément le coût du hedging
statique et dynamique du smile. Un modèle LSV correctement calibré est arbitrage-free
sur les options vanille et permet de valoriser les produits path-dependent de manière
cohérente avec les observations de marché. Cette capacité à reproduire exactement la
surface implicite tout en préservant une dynamique stochastique réaliste explique leur
adoption généralisée pour les autocalls et autres dérivés complexes.

Cette puissance de modélisation vient cependant avec une complexité de calibration
et de calcul significativement plus élevée. La calibration d’un modèle LSV requiert des
boucles itératives imbriquant simulations Monte-Carlo ou résolutions d’équations aux dé-
rivées partielles pour ajuster la volatilité locale en présence du facteur stochastique. Ce
processus est computationnellement intensif pour une calibration complète. La simula-
tion d’un modèle LSV est également plus coûteuse que celle d’un modèle SV pur, car
la volatilité effective ℓ(t, St)

√
νt doit être évaluée à chaque pas de temps, augmentant

considérablement les temps de calcul [8].
Ces contraintes temporelles posent des défis pratiques sur les marchés de produits

structurés, où la rapidité de réponse aux demandes de cotation est cruciale. Des approches
récentes cherchent à accélérer les modèles LSV par des techniques d’apprentissage auto-
matique, notamment l’entraînement de réseaux de neurones [5].

2.5 Modèles de volatilité rugueuse
Depuis le milieu des années 2010, une nouvelle classe de modèles de volatilité a émergé

pour surmonter les limitations des approches classiques : les modèles à volatilité rugueuse.
Ces modèles se caractérisent par une dynamique de variance présentant une mémoire frac-
tionnaire et une régularité hölderienne faible, contrastant avec les diffusions de volatilité
lisses de type brownien standard. Les trajectoires de variance apparaissent plus irrégulières
que celles prédites par les processus de diffusion usuels.

Cette approche a été popularisée par les travaux de Gatheral et al. [19, 4] qui, en
analysant des séries temporelles haute fréquence de volatilité réalisée, ont démontré que
l’exposant de Hurst effectif de la volatilité est significativement inférieur à 0,5 (typique-
ment 0,1–0,3). Cette observation suggère une structure de volatilité non-markovienne à
mémoire longue [14]. Gatheral [19] formalise cette intuition et démontre qu’un processus
de variance fractionnaire simple reproduit mieux les propriétés empiriques des volatilités
tout en s’ajustant efficacement à la surface implicite.

Le modèle Rough Heston constitue une extension directe du modèle de Heston clas-
sique où le noyau exponentiel de la variance est remplacé par un noyau à mémoire longue
de type puissance. Mathématiquement, la variance νt suit un processus de Volterra-
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Ornstein-Uhlenbeck défini par :

dSt = r St dt+
√
Vt St dW

S
t

νt = ν0 +
∫ t

0
K(t− s)κ(θ − Vs) ds+

∫ t

0
K(t− s) ξ√νs dW ν

s

K(t) = tH−1/2

Γ(H + 1/2) , H ∈ (0, 1/2)

(9)

où K est le noyau fractionnaire et H l’exposant de Hurst contrôlant la rugosité.
Contrairement au modèle de Heston standard où la covariance de la variance décroît

exponentiellement, le Rough Heston présente une autocorrélation à décroissance en loi de
puissance : Cov(νt, νt+τ ) ∼ τ 2H−1. Cette propriété permet de capturer la persistance à
long terme observée empiriquement dans les données de volatilité.

Malgré la non-markovianité introduite par le noyau fractionnaire, Gatheral [18] a établi
que le modèle Rough Heston appartient à la famille des modèles affines de variance for-
ward. Cette structure préserve la possibilité de calculs semi-analytiques via une fonction
caractéristique explicite, facilitant la calibration aux options européennes.

El Euch et Rosenbaum [14] ont obtenu l’expression de la fonction caractéristique du
log-prix en résolvant une équation de Riccati fractionnaire [12]. La fonction caractéristique
s’écrit :

ϕ(u;T ) = exp[A(T, u) +B(T, u) ν0 + iu lnS0] (10)

où les fonctions A(T, u) et B(T, u) sont solutions d’équations de Riccati fractionnaires ré-
solues par discrétisation quadratique. Théoriquement, le modèle Rough Heston reproduit
fidèlement plusieurs phénomènes empiriques que les modèles classiques peinent à capturer.
Il génère une pente de skew ATM qui diverge en TH−1/2 pour les maturités très courtes
(voir [17], contrairement à la structure constante (pour T petit) des modèles markoviens.
Cette propriété corrige le déficit des modèles traditionnels dans la modélisation du smile
de court terme.

La calibration s’effectue efficacement grâce à la structure affine préservée, avec un
coût computationnel très significativement supérieur au Heston classique (d’un facteur 10
sur applications) mais restant compatible avec l’usage industriel. El Euch et al. [13] ont
également confirmé que le modèle reproduit l’effet Zumbach [13] : autocorrélation asymé-
trique entre volatilité réalisée et futurs, un phénomène empirique où les rendements passés
prédisent mieux la volatilité future que l’inverse. Contrairement aux modèles markoviens
classiques (comme Heston) qui sont temporellement symétriques et échouent à capturer
cet effet

Le modèle Rough Heston offre un formalisme plus riche que les approches classiques :
avec H = 0, 5, il redonne le Heston standard, tandis que des valeurs H ≈ 0, 1 cap-
turent les propriétés de rugosité empiriquement observées. Cette flexibilité, combinée à
une meilleure cohérence avec les données de volatilité, positionne le Rough Heston comme
une alternative prometteuse pour la modélisation des dynamiques de volatilité complexes.

2.6 Impact du modèle sur le pricing des exotiques
L’utilisation d’un modèle de volatilité inadapté peut entraîner des erreurs significatives

dans la valorisation d’un autocall. Il a été montré qu’un modèle local, même calibré sur
les mêmes vanilles qu’un modèle stochastique, conduit souvent à un prix biaisé pour un
produit à barrière de type knock-out [19]. En particulier, une option knock-out forward
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est systématiquement moins chère sous un modèle local que sous un modèle de Heston
calibré de façon équivalente, avec des écarts parfois substantiels. Ce biais provient du fait
que le modèle local, dépourvu de volatilité future aléatoire, surestime la probabilité de
toucher la barrière et sous-évalue ainsi la valeur conditionnelle de l’option. À l’inverse, les
modèles stochastiques (SV, LSV) incorporent la variabilité future de la volatilité et l’effet
de levier, ce qui explique leur usage privilégié pour la valorisation des autocalls.

3 Calibration des modèles

3.1 Données de marché
Les données utilisées dans cette étude proviennent de Yahoo Finance et concernent les

options européennes sur l’indice S&P 500 observées le 3 juillet 2025. À cette date, le niveau
de l’indice s’établit à S0 = 6278, 12 USD. Le taux sans risque retenu pour l’actualisation
correspond au taux swap USD à 4 ans, fixé à r = 3, 86% et appliqué de manière constante
sur l’ensemble des maturités considérées.

Les prix d’options considérés correspondent aux mid prices, définis comme la moyenne
arithmétique des cours bid et ask, conformément aux conventions de marché. À partir
de ces cotations, les volatilités implicites nécessaires à la calibration des modèles sont
calculées par inversion numérique de la formule de Black-Scholes.

Le choix du S&P 500 comme sous-jacent de référence se justifie par plusieurs facteurs :
la liquidité de cet indice, la profondeur de son marché d’options, et la prépondérance des
produits structurés autocallables émis sur ce type de grands indices equity. L’utilisation
d’options européennes sur indice présente également l’avantage d’éviter les complexités
liées au traitement des dividendes discrets, simplifiant ainsi l’estimation des volatilités
implicites.

Opportunités d’arbitrage

Les cotations d’options observées sur le marché présentent parfois des incohérences
théoriques constituant des opportunités d’arbitrage. Ces incohérences, contraires à l’hy-
pothèse d’efficience, proviennent de facteurs pratiques tels que la microstructure de mar-
ché, les coûts de transaction, les contraintes de liquidité, ou les erreurs temporaires de
cotation.

D’un point de vue théorique, l’absence d’arbitrage impose plusieurs contraintes sur
les prix d’options européennes. Pour des options de même maturité T , les prix de call
C(K,T ) doivent satisfaire les conditions suivantes :

— Monotonicité : ∂C(K,T )
∂K

≤ 0

— Convexité : ∂2C(K, T )
∂K2 ≥ 0

— Bornes : max(S0 −Ke−rT , 0) ≤ C(K, T ) ≤ S0 (bornes d’arbitrage)
Les graphiques présentés (Figures 1a–1c) illustrent les cotations de marché pour trois

maturités représentatives, où les points cerclés en rouge signalent les violations manifestes
de ces conditions d’absence d’arbitrage. .
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(a) 19 sept. 2025 (b) 16 janv. 2026 (c) 15 déc. 2028

Figure 1 – Cotation de marché des calls pour trois maturités représentatives.

L’observation de telles violations dans les données de marché s’explique par plusieurs
mécanismes :

1. Asynchronisme des cotations : les prix bid/ask de différents strikes peuvent être
mis à jour de manière non simultanée

2. Contraintes de liquidité : certains strikes peu liquides présentent des spreads
importants générant des incohérences temporaires

3. Coûts de transaction : l’exploitation effective d’un arbitrage peut être rendue
non profitable par les coûts associés

Filtration

Pour garantir la qualité des données utilisées dans la calibration, nous avons mis en
place des filtres systématiques pour éliminer les cotations non exploitables ou aberrantes.
Les critères d’exclusion que nous avons définis comprennent d’abord les cotations présen-
tant une inversion des cours (ask < bid), les options expirées (maturité résiduelle T ≤ 0),
les mid prices négatifs ou nuls, ainsi que les violations manifestes des conditions d’arbi-
trage identifiées visuellement. Nous excluons également les options présentant des spreads
bid-ask très élevés (indicateur de faible liquidité), les volatilités implicites calculées en
dehors d’une plage de cohérence économique, et les points isolés créant des discontinuités
importantes dans le smile.

Ce protocole de filtrage permet d’éliminer environ 10% des cotations initiales, concen-
trant l’analyse sur des données de qualité supérieure et économiquement cohérentes.

Synthèse du jeu de données final

Après application du protocole de filtrage, le jeu de données final comprend 18 ma-
turités s’échelonnant de 3 mois à plus de 5 ans, représentant un total de 2 396 cotations
d’options. La répartition par maturité est présentée dans le tableau ci-dessous :
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Table 1 – Synthèse du jeu de données après filtrage

Maturité Temps jusqu’échéance (années) Nb strikes Strike ATM Prix call ATM ($)
2025-09-30 0,24 437 6275 156,40
2025-10-31 0,33 182 6275 184,70
2025-11-28 0,40 127 6275 205,80
2025-12-31 0,49 246 6275 228,15
2026-01-16 0,54 172 6275 236,75
2026-02-20 0,63 157 6275 256,95
2026-03-31 0,74 128 6275 278,20
2026-04-17 0,79 156 6275 285,45
2026-05-15 0,86 155 6275 299,40
2026-06-30 0,99 75 6275 321,40
2026-07-17 1,04 79 6250 321,30
2026-09-18 1,21 113 6275 355,35
2026-12-18 1,46 149 6275 387,20
2027-06-17 1,95 69 6275 441,40
2027-12-17 2,45 85 6250 477,85
2028-12-15 3,45 52 6200 528,55
2029-12-21 4,47 49 6200 582,10
2030-12-20 5,46 46 6200 618,25

(a) Maturité 18/06/2026 (b) Maturité 15/12/2028 (c) Maturité 20/12/2030

Figure 2 – Prix des calls (mid) en fonction du strike pour trois maturités lointaines.

3.2 Surface de volatilité implicite
Les prix de marché des options ne sont observés que sur une grille discrète de strikes et

de maturités. La construction d’une surface de volatilité continue et différentiable s’avère
nécessaire pour plusieurs raisons. D’abord, l’application de la formule de Dupire pour
le calcul de la volatilité locale requiert une surface suffisamment lisse pour permettre le
calcul numérique des dérivées partielles. Ensuite, la calibration des modèles de volatilité
stochastique nécessite une évaluation de la fonction caractéristique sur une grille dense
de strikes, dépassant les points de cotation disponibles. Pour construire cette surface
dense, nous avons choisi une approche basée sur le paramétrage eSSVI (extended Surface
SVI). Cette méthode présente l’avantage de garantir l’absence d’arbitrage de la surface
interpolée et offre une flexibilité pour reproduire fidèlement les smiles observés.

Pour chaque maturité Ti, nous calibrons la variance totale w(Ti, k) à l’aide du para-
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métrage eSSVI défini par les paramètres (θi, ρi, ψi) :

w(Ti, k) = 1
2

(
θi + ρi ψi k +

√
(ψi k + ρi)2 + 1 − ρ2

i

)
(11)

où k = ln
(

K
F0,Ti

)
représente le log-moneyness forward et F0,Ti

le prix forward à maturité
Ti.

Ce paramétrage, développé initialement par Gatheral et Jacquier [16], garantit le res-
pect des conditions d’absence d’arbitrage. Spécifiquement, il assure la cohérence butterfly
(positivité de la densité risque-neutre) et la cohérence calendar (croissance de la variance
totale avec la maturité) de la surface construite [25].

La calibration des paramètres eSSVI s’effectue par minimisation au sens des moindres
carrés de l’écart entre les variances totales de marché et celles prédites par le modèle :

(θ∗
i , ρ

∗
i , ψ

∗
i ) = arg min

(θi,ρi,ψi)

∑
j

[wmkt(Ti, kj) − weSSVI(Ti, kj; θi, ρi, ψi)]2 (12)

sous contraintes d’absence d’arbitrage.

Figure 3 – Smiles de volatilité eSSVI ajustés sur les options standards S&P 500 au 03
juillet 2025, dans l’espace log-moneyness forward k et volatilité implicite. Les points bleus
représentent les volatilités implicites, et la courbe rouge correspond à l’ajustement eSSVI.

3.3 Calibration du modèle de volatilité locale
À partir de la surface de volatilité implicite σimpl(T,K) calibrée via eSSVI, nous recons-

truisons les prix d’options européennes C(T,K) à l’aide de la formule de Black-Scholes.
Nous calibrons le modèle de volatilité locale en appliquant directement la formule de
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Dupire (4) sur la surface de prix construite.

(a) Maturité 18/06/2026 (b) Maturité 15/12/2028 (c) Maturité 20/12/2030

Figure 4 – Comparaison entre les prix de calls calculés via la surface eSSVI et les prix
de marché pour trois maturités.

Les dérivées partielles nécessaires, ∂TC, ∂KC et ∂2
KKC, sont calculées par différences

finies sur la grille densifiée (T,K). Pour limiter l’amplification du bruit numérique lors
du calcul de la dérivée seconde ∂2

KKC, une régularisation de Tikhonov est appliquée sur
la surface des prix, améliorant la stabilité numérique de la procédure.

L’exigence d’une surface implicite sans arbitrage (butterfly et calendar) est cruciale
pour assurer la stabilité numérique de la formule de Dupire, particulièrement pour le terme
au dénominateur K2 ∂2

KKC, et garantir l’interprétation probabiliste correcte du modèle
par la positivité de la densité risque-neutre.

La figure 6 illustre la comparaison entre les prix de calls calculés via la surface eSSVI
(courbe bleue) et ceux obtenus par résolution de l’équation aux dérivées partielles de
Dupire (courbe orange) pour différentes maturités.

La calibration du modèle de Dupire présente une erreur quadratique moyenne (RMSE)
de 12,14 USD, correspondant à une erreur absolue moyenne en pourcentage (MAPE) de
4,9%. Plus de 91% des prix modélisés se situent à moins de 10% des prix observés sur le
marché.

Figure 5 – Surface de volatilité locale σLV(T,K) obtenue par calibration de Dupire.
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Figure 6 – Validation de la calibration Dupire : comparaison entre les prix eSSVI et les
prix obtenus par l’équation de Dupire pour différentes maturités.

Théoriquement, la construction du modèle de volatilité locale selon Dupire permet de
reproduire exactement les prix de marché sur l’ensemble de la surface, en l’absence de
bruit et d’imperfections, la formule s’appuyant directement sur les dérivées des prix d’op-
tions. Cependant, les prix observés intègrent du bruit de cotation, des erreurs de marché
et parfois une liquidité limitée, notamment pour les strikes extrêmes. L’interpolation et
le lissage préalables de la surface des calls, destinés à corriger ces erreurs potentielles, in-
troduisent un biais numérique et expliquent la présence d’un résidu d’erreur, de sorte que
l’ajustement n’est pas parfaitement exact, mais reste très proche de la surface observée.

(a) 18/06/2026 (b) 17/12/2027 (c) 20/12/2030

Figure 7 – Prix des calls OTM : comparaison marché (points) et modèle de volatilité
locale (ligne) pour trois maturités.

Comme expliqué précédemment dans 2.2, le modèle de volatilité locale induit un apla-
tissement progressif des smiles de volatilité forward lorsque l’on considère des options à
départ différé (forward-start options). La Figure 8a met ce phénomène en évidence sur nos
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données : plus la date de départ t1 est lointaine, plus le smile forward s’aplatit, jusqu’à
devenir quasi-linéaire pour les échéances éloignées. La Figure 8b compare explicitement le
smile forward à t1 = 0 et à t1 = 2.41 ans, soulignant la réduction marquée de l’amplitude
et du skew.

(a) Évolution empirique du smile de volatilité
forward pour différents t1.

(b) Comparaison du smile forward à t1 = 0 et
t1 = 2.41 ans (aplatissement).

Figure 8 – Analyse du comportement des smiles de volatilité forward à la valeur du
spot.

3.4 Calibration du modèle de Heston
Heston [22] démontre que le prix d’un call européen sous le modèle (5) peut s’expri-

mer sous forme d’intégrale semi-fermée en utilisant la fonction caractéristique jointe du
processus. Cette formulation évite la simulation Monte-Carlo lors de la calibration aux
options vanille et permet une évaluation rapide des prix.

Pour accélérer le calcul des prix sur une grille dense de strikes, nous utilisons la mé-
thode de transformée de Fourier rapide (FFT) proposée par Carr et Madan [7]. Cette
approche évalue efficacement les prix d’options pour l’ensemble des strikes à partir de la
fonction caractéristique du log-prix :

Cθ(K,T ) = e−αk

π

∫ ∞

0
ℜ
[
e−iuk ϕT (u− i(α + 1); θ)

(α + iu)(α+ iu+ 1)

]
du (13)

où k = ln(K/S0) représente le log-moneyness, ϕT (u; θ) la fonction caractéristique du
log-prix sous le modèle de Heston, et α > 0 un paramètre assurant la convergence de
l’intégrale.

Nous ajustons le vecteur de paramètres θ = (ν0, θ, κ, ξ, ρ) en minimisant l’erreur qua-
dratique moyenne sur les volatilités implicites :

L(θ) = 1
|D|

∑
(i,j)∈D

(
σmkt(Ti, Kj) − σmod(Ti, Kj; θ)

)2
(14)

où D représente l’ensemble des couples (maturité, strike) retenus après filtrage, et RMSEσ(θ) =√
L(θ) l’erreur quadratique moyenne résultante.

Les bornes de calibration sont définies comme suit :

ν0, θ ∈ [10−4, 1.0], κ ∈ [0.1, 8.0], ξ ∈ [0.01, 5.0], ρ ∈ [−1, 1]
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Le tableau 2 présente les paramètres calibrés ainsi que l’indicateur de qualité global. La
figure 10 illustre l’ajustement obtenu sur la surface de volatilité implicite et la comparaison
avec les prix de marché pour différentes maturités.

Table 2 – Paramètres calibrés du modèle de Heston (3 juillet 2025)

ν0 θ κ ξ ρ RMSEσ (vol-pts)
Valeur 0,0177 0,0242 2,363 0,337 -0,503 0,0074

Figure 9 – Surface de volatilité implicite reproduite par le modèle de Heston calibré.

(a) 18 juin 2026 (b) 15 décembre 2028 (c) 20 décembre 2030

Figure 10 – Comparaison des prix de calls entre le marché (points) et le modèle de
Heston calibré (ligne) pour trois maturités représentatives.

3.5 Calibration du modèle LSV Heston
Nous avons obtenu σLV(t, S) par calibration de la surface de volatilité locale, et la

dynamique de νt par la calibration du modèle de Heston. La calibration LSV consiste à
construire ℓ(t, S) telle que (8) soit satisfaite sur une grille (tm, Sj) et que les prix vanilles
du modèle LSV reproduisent le marché.
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Pour estimer E[νt | St = S] nous simulons N trajectoires sous Heston-LSV courant
(avec ℓ fixée) et on estime, aux temps tm, l’espérance conditionnelle via une régression
noyau :

Ê[νtm | Stm = Sj] =
∑N
i=1 Kh(Sj − S

(i)
tm) ν(i)

tm∑N
i=1 Kh(Sj − S

(i)
tm)

, Kh(x) = exp
(

− x2

2h2

)
, (15)

et où la bande passante hi est fixée à h = 0.1 × S0 pour chaque tranche temporelle. Nous
appliquons ensuite (16) point par point, avec une relaxation pour stabiliser :

ℓ(k+1)(tm, Sj) = (1 − η) ℓ(k)(tm, Sj) + η
σLV(tm, Sj)√

Ê(k)[νtm | Stm = Sj]
, η ∈ (0, 1]. (16)

(a) Leverage function ℓ(t, s) calibrée sur les options
S&P 500 au 3 juillet 2025. avec M = 50000.

(b) Smile de volatilité du S&P500 im-
plicite sous le modèle LSV

Figure 11 – Surfaces calibrées sur options S&P 500 au 3 juillet 2025.

(a) T ≈ 0.21 an (b) T ≈ 0.96 an (c) T ≈ 2.46 an

Figure 12 – Comparaison des prix de calls : marché (points) vs modèle de LSV (ligne)
pour trois maturités.

3.6 Calibration du modèle Rough Heston
Le modèle Rough Heston (9) étend le modèle de Heston classique en introduisant

une mémoire fractionnaire dans la dynamique de la variance. La calibration repose sur
la résolution numérique d’équations de Riccati fractionnaires pour obtenir la fonction
caractéristique, puis sur l’inversion de Fourier pour le calcul des prix d’options [12].
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Omar et al [12] montrent que la fonction caractéristique du log-prix s’écrit, comme
dans Heston, via une équation de Riccati, mais fractionnaire. Plus précisément, si h(a, ·)
résout

Dα
t h(a, t) = F

(
a, h(a, t)

)
, I1−α

t h(a, 0) = 0,

avec Dα la dérivée de Caputo, I1−α l’intégrale fractionnaire, et

F (a, x) = 1
2(−a2 − ia) + λ(iaρν − 1)x + 1

2(λν)2x2,

alors la fonction caractéristique vérifie

ϕ(a, T ) = exp
(
λθ
∫ T

0 h(a, t) dt︸ ︷︷ ︸
I1h(T )

+V0 I 1−α
T h(a, ·)︸ ︷︷ ︸

1
Γ(1−α)

∫ T

0 (T−t)−αh(a,t) dt

)
.

La CF du log-ST s’obtient en multipliant par eia(logS0+rT ).
Pour résoudre la Riccati fractionnaire, nous utilisons le schéma prédicteur-correcteur

d’Adams–Bashforth–Moulton décrit dans [12], basé sur la forme de Volterra

h(a, t) = 1
Γ(α)

∫ t

0
(t− s)α−1 F

(
a, h(a, s)

)
ds.

Les prix d’options vanille sont ensuite calculés par la méthode FFT de Carr-Madan
[7], utilisant la même formulation que pour le modèle de Heston classique (13) mais avec
la fonction caractéristique fractionnaire :

CrHeston
Θ (K,T ) = e−αk

π

∫ ∞

0
ℜ
[
e−iuk ϕrHeston

T (u− i(α + 1); Θ)
(α + iu)(α+ iu+ 1)

]
du (17)

où Θ = (H,λ, θ, ν, ρ, ν0) représente le vecteur des paramètres du modèle Rough Heston.
Nous calibrons en minimisant l’erreur quadratique sur les volatilités implicites :

min
Θ

∑
i,j

(IVmod(Ki, Tj; Θ) − IVmkt(Ki, Tj))2 (18)

Nous utilisons une approche multi-démarrages combinant une phase globale par algo-
rithme évolutionnaire (Differential Evolution) suivie d’un raffinement local par L-BFGS-B.
Les contraintes sur les paramètres sont définies par :

H ∈ (0, 0.5), λ > 0, θ > 0, ν > 0, ρ ∈ (−1, 1), ν0 > 0 (19)

Le tableau 3 présente les paramètres calibrés et l’erreur moyenne obtenue. La figure 13
compare les volatilités implicites de marché et celles générées par le modèle calibré pour
plusieurs maturités.

Table 3 – Paramètres calibrés du modèle de Rough Heston et erreur quadratique
moyenne (RMSE).

H λ θ ν ρ v0 RMSE
0.2561 1.0787 0.0847 0.6426 -0.7323 0.0210 0.0021
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Figure 13 – Calibration du modèle de Rough Heston : comparaison entre les volatilités
implicites de marché (points rouges) et celles générées par le modèle calibré (courbe bleue)
pour plusieurs maturités.

L’ajustement obtenu est globalement satisfaisant sur l’ensemble des maturités, y com-
pris dans les zones hors-la-monnaie où le modèle de Heston classique présente généra-
lement des limitations. L’exposant de Hurst calibré (H = 0, 2561) confirme la présence
de rugosité dans les données de volatilité du S&P 500, cohérente avec les observations
empiriques de la littérature.

Nous remarquons de légères irrégularités locales dans les smiles ajustées. Ces arté-
facts proviennent principalement des paramètres numériques de la FFT (taille de grille,
troncature fréquentielle) plutôt que de limitations structurelles du modèle.

Le coût computationnel de la calibration est environ dix fois supérieur à celui du
modèle de Heston standard, principalement dû à la résolution des équations fractionnaires.

Afin de mieux évaluer la qualité du calibrage du modèle, l’ensemble des données de
marché a été séparé en deux sous-ensembles distincts : un jeu d’entraînement utilisé
directement lors de la calibration des paramètres, et un jeu de validation complètement
tenu à l’écart de l’optimisation. Cette approche permet de distinguer l’erreur de calibration
(mesurée sur le train) de l’erreur de prédiction (mesurée sur le test), et donc d’évaluer
la capacité du modèle à généraliser au-delà des points utilisés pour l’ajustement. Les
figures suivantes illustrent cette superposition marché/modèle pour plusieurs maturités
représentatives sous le modèle de Rough Heston.
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Figure 14 – Surface de volatilité implicite obtenue sous le modèle de Rough Heston
(03/07/2025). La surface est représentée en fonction du strike K (axe x) et de la maturité
T (axe y).

La figure 14 présente la surface de volatilité implicite générée par le modèle. La struc-
ture en maturité est cohérente avec les données : les maturités courtes présentent des
niveaux de volatilité plus élevés, qui diminuent progressivement avec l’échéance.

(a) T ≈ 3.45 ans. (b) T ≈ 1.21 an. (c) T ≈ 0.21 an.

Figure 15 – Superposition marché / modèle (train et validation) pour plusieurs maturités
sous Rough Heston.

4 Pricing des Autocallable Barrier Reverse Conver-
tibles (ABRCs) :

Dans cette section, on s’intéresse au pricing d’une catégorie populaire de produits
structurés, les autocallable barrier reverse convertibles (ABRC). Plus précisément, nous
comparons la valorisation des dérivés exotiques Athéna sous les dynamiques Heston-LSV
et rHeston. Dans toute l’analyse, nous supposons que les flux sont actualisés au taux sans
risque, négligeant ainsi le risque de crédit de l’émetteur du produit.



 

 

 

 

 

              

19

4.1 Les BRC
Typiquement, un structuré BRC se décompose en un zéro-coupon, une position short

sur une option put barrière down-and-in, et une série de coupons. Ces coupons peuvent
eux-mêmes être soumis à condition : ils sont parfois conditionnés à l’évolution de l’actif
sous-jacent à certaines dates d’observation intermédiaires (et donc sensibles à des barrières
du type down-and-out) ; ou garantis de façon inconditionnelle.

La fonction d’autocall ajoute au produit une caractéristique de remboursement anti-
cipée via des barrières up-and-out : si, à une date d’observation, la barrière est franchie,
la note est immédiatement remboursée au pair et le coupon de la période est versé [15].

En environnement de taux d’intérêt bas, ces produits offrent des coupons plus élevés
et une probabilité non négligeable de remboursement anticipé quand le sous-jacent est
stable ou en légère hausse. En contrepartie, ils portent un downside tail risk marqué en
cas de knock-in et clôture finale sous le strike, et présentent une forte dépendance au
modèle (dynamique de smile, corrélation spot–vol) ainsi qu’une couverture coûteuse [15].

Sur des autocalls US, les écarts prix–valeur persistent sous des modèles naïfs (Black
– Scholes / LV) et se réduisent lorsque la volatilité stochastique est introduite [2], ce qui
révèle que la « fair value » est très sensible au choix de modèle. Opérationnellement, une
sous-tarification (ou sur-tarification) systématique induit des erreurs sur les probabilités
d’autocall/knock-in, des grecs mal calibrés et donc un P&L de couverture instable, en
particulier près des barrières et des dates d’observation ; d’où la nécessité de recourir à
des cadres qui reproduisent la covariance spot–vol et la smile forward pour obtenir des
prix et des risques fidèles [15].

4.2 Modélisation des Autocallable Athéna
Pour notre étude, nous avons choisi un exemple des produits ABRC : les Athéna. Les

produits Athéna ne versent aucun coupon pendant la vie du produit ; tous les coupons sont
payés au moment de la clôture (rappel anticipé ou maturité) si la condition est satisfaite.
À chaque date d’observation Ti, si le sous-jacent est au moins au niveau Ai (souvent
Ai = S0), le produit est rappelé au pair et l’investisseur reçoit N plus un coupon mémoire
égal au cumul par année écoulée depuis l’émission. À maturité, si aucun rappel n’a eu lieu,
l’investisseur récupère le capital N et reçoit le cumul des coupons uniquement si STN

≥ AN
(sinon N seul). Il n’y a pas de jambe reverse-convertible ni de barrière knock-in dans cette
version à capital garanti.

Le temps d’autocall τac correspond à la première date d’observation Ti à laquelle le
sous-jacent atteint ou dépasse le niveau d’autocall Ai. Si aucune date ne satisfait cette
condition, on considère que τac = +∞. On a alors :

τac = inf{Ti ∈ T : STi
≥ Ai }, (inf ∅ := +∞), i∗ = min{ i : Ti = τac},

et les coupons cumulés Yi := N
∑i
j=1 Cj (avec Cj = C ∆j). Notons τ := min(τac, TN) et

i(τ) = i∗ si τ = τac, sinon i(τ) = N .
Le payoff du produit s’écrit alors de manière suivante :

Π = D(0, τac)
(
N + Yi∗

)
1{τac≤TN } + D(0, TN)

(
N + YN 1{τac=+∞, STN

≥AN }

)
.

(i) si un autocall est exercé, l’investisseur reçoit le capital N plus le cumul des coupons
Yi∗ actualisé à la date τac. On a alors le versement de N + Yi∗ à Ti∗
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(ii) Tandis qu’en l’absence d’autocall, le paiement à maturité correspond au capital N
augmenté des coupons cumulés seulement si la condition sur le sous-jacent à maturité est
respectée, c’est-à-dire STN

≥ AN . On a alors le versement de N + YN 1{STN
≥AN } (sinon N

seul)

paramétres du produit

Objet Symbole Définition / Interprétation

Sous-jacent (St)t∈[0,TN ], S0 Processus de prix et niveau initial.
Dates d’observation T = {T1, . . . , TN} Tests d’autocall (Bermudan).
Pas de temps ∆i = Ti − Ti−1 Intervalle entre observations.
Niveau(s) d’autocall Ai = BA(Ti)S0 Seuils (souvent Ai = S0 ; possible

step-down).
Nominal N Montant notionnel.
Coupon de période Ci = C ∆i Mémoire Athéna : acquis par année

écoulée, payé à la clôture.
Facteur d’actualisation D(0, t) Actualisation au taux sans risque.

Sur la figure 16, des trajectoires du sous-jacent d’un Ahténa sont affichés. On peut
observer que dès que celui-ci atteint la barrière d’activation de l’autocall, le remboursement
est effectif et il n’est plus utile de simuler le sou-jacent jusqu’à la maturité

(a) Scénarios de la trajectoire du sous-jacent
(b) Cash-Flow par date d’observation (hors
principal). À TN

Figure 16 – Scénarios illustratifs pour l’Athéna. Les barrières d’autocall sont testées de
type Bermudan.

4.3 Pricing sous le modèle LSV
Le payoff des produits Athéna, de nature fortement path-dependent, est évalué par

simulation Monte Carlo. La dynamique du modèle LSV est discrétisée à l’aide du schéma
d’Euler–Maruyama. Pour un pas de temps ∆t, on a :

St+∆t = St exp
((
r − 1

2 ℓ
2(t, St)Vt

)
∆t+ ℓ(t, St)

√
Vt∆t ZS

)
,

Vt+∆t = Vt + κ(θ − Vt) ∆t+ ξ
√
Vt∆t ZV ,
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avec corr(ZS, ZV ) = ρ.
La grille de simulation est construite de manière à inclure explicitement toutes les dates

d’observation, ce qui permet de traiter les franchissements de barrières. Une réduction de
variance est obtenue par l’utilisation de variables antithétiques. Les probabilités d’autocall
et de survie sont estimées directement à partir des trajectoires simulées.

4.4 Pricing sous rHeston
La dynamique du modèle Rough Heston est non markovienne, ce qui empêche l’appli-

cation directe d’un schéma d’Euler–Maruyama sur la variance. Pour rendre la simulation
exploitable, nous utilisons la méthode de Markovian lifting [1, 12], qui consiste à approxi-
mer le noyau fractionnaire

KH(t) = tH− 1
2

Γ
(
H + 1

2

)
par une combinaison finie d’exponentielles :

KH(t) ≈
N∑
j=1

wje
−xjt.

On introduit alors N processus auxiliaires (Y (j)
t )j=1,...,N définis par

dY
(j)
t = −xjY (j)

t dt+ wjξ
√
Vt dW

V
t , avec Vt ≈

N∑
j=1

Y
(j)
t .

La variance devient ainsi une combinaison markovienne de processus d’Ornstein–
Uhlenbeck, ce qui permet d’appliquer un schéma d’Euler–Maruyama standard pour simu-
ler (St, Y (1)

t , . . . , Y
(N)
t ) sur une grille de discrétisation contenant explicitement les dates

d’observation.

4.5 Comparaison des deux modèles
Nous avons utilisé les modèles LSV et rheston calibrés sur les options européennes afin

de pricer les Athena
Le tableau 4 met en évidence les forces, faiblesses et contraintes opérationnelles des

deux modèles, LSV et rHeston, en termes de complexité de calibration, coûts de calcul
et simulation. Le modèle LSV offre un léger avantage en termes de qualité d’ajustement.
Les différences restent cependant marginales, indiquant que les deux modèles parviennent
à reproduire la surface de volatilité implicite de manière globalement satisfaisante. Tou-
tefois, LSV reproduit mieux les maturités longues, tandis que Rough Heston fournit un
meilleur ajustement en maturités courtes, cohérent avec la présence d’une volatilité plus
“rugueuse” et réaliste à court terme (effet empirique bien documenté). Ainsi, les modèles
sont comparables en précision globale, mais optimisés pour des zones différentes de la
surface.

En termes de complexité numérique, les deux modèles présentent des contraintes fortes
mais de nature différente. Le modèle LSV impose une chaîne de calcul particulièrement
lourde : sa calibration requiert l’estimation conjointe des paramètres stochastiques de
Heston et la construction de la surface de levier locale, ce qui conduit à un processus



 

 

 

 

 

              

22

d’optimisation complexe et coûteux. Ce caractère intensif se retrouve dans les temps
de calcul. Le Rough Heston repose quant à lui sur la résolution d’équations de Riccati
fractionnaires. Malgré l’existence d’une formule semi–fermée pour les calls, les calculs
restent sensibles aux valeurs initiales et tout aussi exigeants, avec des temps d’exécution
encore plus longs ( 30 heures dans les mêmes conditions).

Sur le volet simulation, la différence principale réside dans le coût par trajectoire. Le
LSV bénéficie d’une dynamique simulable par des schémas relativement simples (type
Euler), tandis que le Rough Heston nécessite un lifting markovien pour approximer le
kernel fractionnaire, ce qui augmente significativement le nombre d’opérations par path.
Cette surcharge se retrouve dans la vitesse de convergence : le LSV atteint une précision
satisfaisante avec environ 5 050 trajectoires, alors que le Rough Heston en requiert environ
6 250, confirmant que la structure de volatilité rugueuse accroît le bruit de Monte Carlo
et rallonge le temps nécessaire pour stabiliser les estimateurs.

Table 4 – Comparaison entre LSV et Rough Heston
Aspect LSV (Local Stochastic Volati-

lity)
Rough Heston

Qualité du fit
(Calibration)

RMSE = 2.86
Ajustement plus précis pour les ma-
turités long termes

RMSE = 2.93
Ajustement comparable ; colle mieux
pour les maturités courtes

Complexité
théorique du
calibrage

Calibration = problème mathéma-
tique et numérique complexe.
Estimation conjointe des paramètres
de Heston + construction de la sur-
face de levier.
Requiert des itérations de Monte
Carlo imbriquées ⇒ très coûteuses.

Calibration fondée sur la résolution
des équations de Riccati fraction-
naires.
Présente une formule semi fermée
pour le prix des calls.
Calculs lourds et sensibles aux va-
leurs initiales.

Temps de calculs 23h (sur 2738 cotations ; CPU) 30h (mêmes conditions)

Simulation :
Complexité

Chaque trajectoire est relativement
simple (schéma d’Euler)

Simulation plus lourde (approxima-
tion du kernel par lifting ⇒ plus
d’opérations par trajectoire)

Simulation :
Convergence

Convergence avec ≈ 5050 paths Convergence avec ≈ 6250 paths
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(a) Athena : prix en fonction de la barrière
(LSV vs Rough Heston, IC 95 %).

(b) Différence de prix (Rough − LSV) et écart-%
vs LSV, avec IC 95 %.

Figure 17 – Prix et écart de prix selon le niveau de barrière (3 ans, 4 obs/an, coupon
12 %).

La figure 17b nous montre que le prix augmente de façon monotone et convexe avec
la barrière pour les deux modèle. En effet, un seuil plus haut retarde l’autocall et accroît
le coupon cumulé (coupon inconditionnel). Le rHeston est au-dessus de LSV sur toute la
plage.

Une explication plausible est que sous Rough, la volatilité reste élevée plus longtemps
après un drawdown (mémoire « rugueuse ») et la corrélation négative spot–vol renforce
la skew à court terme. Cela réduit la probabilité de franchir tôt la barrière. À l’inverse,
LSV réverse plus vite vers un régime plus calme, ce qui facilite les rattrapages rapides et
donne une probabilité d’autocall plus élevée.

Figure 18 – Probabilité d’autocall cumulative (CDF) par date d’observation — LSV vs
Rough.

La CDF LSV est au-dessus de Rough au début : LSV accumule plus vite les autocalls.
En miroir, la survie 1 − CDF est plus élevée sous Rough, ce qui implique une espérance
de temps d’appel plus grande et un prix plus élevé.
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(a) Maturité (barrière = 95%). (b) Barrière (maturité = 3 ans).

Figure 19 – Temps de sortie moyen : modèles LSV vs Rough Heston.

5 Conclusion
Dans ce papier, nous avons examiné en détail quatre classes de modèles : 1) la volatilité

locale selon Dupire, 2) le modèle de Heston, 3) le modèle LSV (qui conbine les deux
modèles précédents) ainsi que le modèle 4) rough Heston afin de mesurer l’apport des
modèles de volatilité rugueuse par rapport aux approches plus classiques de volatilité
stochastique locale. Les modèles ont été calibrés sur des données réelles du S&P 500, ce
qui permet d’évaluer leur capacité à reproduire fidèlement le smile implicite observé sur
le marché et à valoriser avec précision des produits autocallables.

L’apport central réside dans la calibration opérationnelle du modèle rough Heston.
Avec un exposant de Hurst calibré à H = 0,2561, cohérent avec la littérature, le modèle
améliore l’ajustement vanille tout en conservant une structure semi-analytique exploi-
table. Techniquement, la résolution des équations de Riccati fractionnaires par schémas
d’Adams–Bashforth–Moulton, couplée à une inversion FFT maîtrisée, transforme progres-
sivement la volatilité rugueuse d’un concept académique en un outil exploitable.

Les résultats confirment une lecture désormais bien établie : chaque classe de modèle
possède un domaine de validité. Les cadres classiques (LV, SV, LSV) demeurent des ré-
férences robustes et bien comprises pour la majorité des usages. Les modèles rugueux
apportent une sophistication utile lorsque la structure fine de la volatilité importe (matu-
rités courtes, cohérence inter-dates du smile) et peuvent, dans le contexte des autocalls,
affiner la valorisation et la gestion des risques entre dates de constatation.

L’analyse comparative reste incomplète. La calibration conduite sur un seul sous-jacent
(S&P 500) restreint la portée externe des conclusions. De plus, la viabilité opérationnelle
exige une maîtrise consolidée des contraintes numériques (FFT, régression conditionnelle,
tolérances) et des coûts de calcul, même si des progrès encourageants ont été observés.

Malgré certaines limites, l’adoption industrielle des modèles rough progresse, bien
que de manière prudente. Les difficultés liées aux calculs et à la validation tendent à
s’atténuer grâce aux avancées récentes : schémas hybrides, liftings markoviens, calibration
assistée par des algorithmes sophistiqués. Ces progrès rendent envisageable le passage
des modèles rough de la théorie à la pratique, surtout lorsque leur réalisme apporte un
bénéfice tangible.
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Appendix

1 Théorème de Gyöngy
Soit Yt un processus d’Itô en dimension finie,

dYt = β(t, ω) dt + δ(t, ω) dWt,

où β et δ sont adaptés et bornés et où δ(t, ω) δ(t, ω)⊤ est uniformément définie positive.
Alors il existe un processus markovien Zt admettant une solution faible,

dZt = b(t, Zt) dt + d(t, Zt) dWt,

tel que Zt et Yt aient la même loi marginale pour tout t ≥ 0, avec

b(t, z) = E[ β(t, ω) | Yt = z ] , d(t, z) d(t, z)⊤ = E
[
δ(t, ω) δ(t, ω)⊤ | Yt = z

]
.

2 Extrait des données utilisées

Table 5 – Extrait de la chaîne d’options filtrée (12 premières lignes)

expiration strike last_price bid ask
2025-09-19 1400.0 0.125 0.05 0.20
2025-09-19 1600.0 0.175 0.10 0.25
2025-09-19 1800.0 0.275 0.25 0.30
2025-09-19 2000.0 0.300 0.25 0.35
2025-09-19 2200.0 0.450 0.40 0.50
2025-09-19 2300.0 0.550 0.50 0.60
2025-09-19 2400.0 0.650 0.60 0.70
2025-09-19 2500.0 0.775 0.70 0.85
2025-09-19 2600.0 0.875 0.80 0.95
2025-09-19 2700.0 1.025 0.95 1.10
2025-09-19 2800.0 1.150 1.10 1.20
2025-09-19 2900.0 1.325 1.25 1.40

3 Reproductibilité

Matériel et système

Table 6 – Configuration matérielle et système

Processeur Intel Core i7-12650H (12th Gen, 2,30 GHz)
Mémoire RAM 16 Go (15,6 Go utilisables)
Système Windows 64 bits, architecture x64
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Environnement Python

Table 7 – Versions des bibliothèques Python

Librairie Version

Python 3.12.4
NumPy 2.2.6
SciPy 1.16.0
Pandas 2.3.0
Matplotlib 3.10.3
QuantLib 1.38
py_vollib 1.0.1
yfinance 0.2.63

4 Exemple de notice d’ABRC (BCV)
Source : Notice de cotation Barrier Reverse Convertible Autocallable, BCV, 22 janvier
2018. ISIN CH0398782687.



 

 

Barrier Reverse Convertible Autocallable 
Underlyings: Novartis - Roche - Givaudan 

Coupon: 5,30% p.a. - Autocall 100,00% 

Barrier Cont. 65,00% - Maturity: 27 January 2020 
 

LISTING NOTICE 

www.bcv.ch/invest 

021 212 42 00 

 

  

 

 

 

 

 This structured product is not a collective investment within the meaning of the Swiss 
Federal Investment Fund Act. It does not require approval from the Swiss Financial Market 
Supervisory Authority (FINMA) and is not subject to FINMA supervision. Investors are also 
exposed to the risk of insolvency of the issuer. 

 

 1. PRODUCT DESCRIPTION 

 
Issue details 

Sec. No. / ISIN / Symbol 39 878 268 / ISIN CH0398782687 / 0217BC 

Issuer Banque Cantonale Vaudoise, Lausanne Switzerland (S&P AA/stable) 

Lead manager / Calculation 
agent / Paying agent 

Banque Cantonale Vaudoise, Lausanne 

Prudential supervision BCV Lausanne, Switzerland, is subject to prudential supervision by Swiss Financial Market 
Supervisory Authority (FINMA). 

Nominal amount CHF 5 000 

Issue size 200 Barrier Reverse Convertible Autocallable (includes an increase and reopening clause) 

Minimum investment CHF 5 000 

Issue price 100,00%  

Base currency CHF 

Distribution fees No distribution fees 

Initial fixing date 19 January 2018 (closing price of the underlying share(s) on the reference stock exchange) 

Payment date 26 January 2018 

Final fixing date 20 January 2020 (closing price of the underlying share(s) on the reference stock exchange) 

Payout date 27 January 2020 

Definition The Autocallable Barrier Reverse Convertible is a structured product. It pays a guaranteed 
coupon throughout the product’s lifetime (up to maturity or early redemption). This particular 
product will be redeemed before maturity under certain conditions. For early redemption to occur, 
each of the product’s underlying assets must be above its Autocall Level. 

SVSP-Classification Yield enhancement – Barrier Reverse Convertible (1230), according to the Swiss Derivative Map 
available at www.svsp-verband.ch 

  

27



 

 

2 / 5 

 
Underlying 

 
i Name ISIN Code 

Reference 
Exchange 

Initial Fixing 
(Si,0) 

1 Novartis AG CH0012005267 SIX Swiss Ex 83,38 

2 Roche Holding AG CH0012032048 SIX Swiss Ex 234,50 

3 Givaudan SA CH0010645932 SIX Swiss Ex 2 295,00 

 

i Barrier Ratio Early redemption level 

1 54,197 59,96642 83,38 

2 152,425 21,32196 234,50 

3 1 491,750 2,17865 2 295,00 
 

 
Product terms and conditions 

Changes that are 
unplanned or not agreed 

Information about any changes that are unplanned or not agreed contractually (e.g.,capital 
transactions that affect the underlying assets such as splits, par-value reimbursements or 
conversions) shall be provided at www.bcv.ch/invest. 

To receive email alerts about these changes, you can sign up on the website and add this 
product to your favorites. 

Strike level (K) 100,00% of the initial fixing 

Barrier (B) 65,00% of the initial fixing 

Type of Barrier American (the price of each underlying asset on the reference stock exchange is observed 
continuously) 

Early redemption level 
(autocall) 

100,00% of the initial fixing 

Worst-performing 
underlying asset 

The worst-performing underlying asset is determined according to the following formula: 

Mini (
Si,T

Si,0
)  where 

Si,0 is the initial fixing for underlying i 

Si,t is the closing price of underlying i on the observation date 

Coupon 5,30% p.a.  

The coupons will be paid in two tranches : 

0,00% p.a. in interest 

5,30% p.a. capital gain resulting from the option premium. 

Coupon-Frequency Half-yearly (2,65% per Period) 

Coupon payment dates Coupons payments will occur on the following dates :     

26 July 2018 - 28 January 2019 - 26 July 2019 - 27 January 2020 

Coupon calculation method 30/360, Modified following, unadjusted 

Early redemption If the worst-performing underlying asset is above its early redemption level on the observation 
date, the product expires immediately and the nominal amount is redeemed at 100%. 

Early redemption 
observation dates 

19 July 2018 - 21 January 2019 - 19 July 2019 - 20 January 2020 

Early redemption dates 26 July 2018 - 28 January 2019 - 26 July 2019 - 27 January 2020 
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