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Résumé

Les Autocallables sont des produits structurés a remboursement anticipé, tres
prisés dans la gestion de portefeuille structurée. Leur nature fortement path-
dependent et leur payoff complexe rendent leur valorisation difficile et néces-
sitent 1'utilisation de modeles sophistiqués et de techniques numériques avan-
cées (Monte Carlo, PDE). Ce papier propose une étude comparative entre les
approches traditionnelles et récentes en matiere de modélisation de la volati-
lité pour ces produits. Dans ce cadre, une attention particuliere est portée aux
modeles Local-Stochastic Volatility (LSV) et Rough Heston, qui incarnent res-
pectivement les approches industrielles et les avancées académiques récentes.
Les modeles LSV sont reconnus pour leur capacité a intégrer la dynamique du
sous-jacent tout en assurant une calibration fidele a la surface de volatilité im-
plicite. Les modeles rough, quant a eux, introduisent une structure de mémoire
longue et de rugosité dans la volatilité, en phase avec les observations empi-
riques sur les marchés. L’objectif est d’évaluer, via une calibration numérique,
si les modeles de volatilité rugueuse offrent une amélioration significative de

la valorisation des Autocallables par rapport aux méthodes LSV établies.

Mots-clés : Autocalls, path-dependent, Local Volatility, Stochastic Volatility,
Local-Stochastic Volatility, Rough Heston, Monte Carlo.
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1 Introduction

Les produits structurés sont des instruments financiers combinant un actif obligataire
avec un ou plusieurs payoffs dérivés equity, permettant d’ajuster le profil rendement-
risque selon les besoins de I'investisseur. Ces produits représentent une part significative
du marché des dérivés equity, particulierement dans un contexte de taux d’intérét bas
ou leurs coupons élevés les rendent plus attractifs. Les Autocalls constituent une famille
particuliere de produits structurés intégrant une option de remboursement anticipé. Le
mécanisme de rappel est activé si, a I'une des dates d’observation prédéfinies T}, le prix
du sous-jacent St franchit (ou atteint) un niveau de rappel L , entrainant alors le rem-
boursement du produit et le versement d’un coupon c. Une telle structure nécessite des
modeles capables de capturer fidelement la dynamique conjointe du sous-jacent et de sa
volatilité.

En une vingtaine d’années, la modélisation des autocalls a évolué vers un compromis
entre exigences de calibration de la VI, fidélité des dynamiques de volatilité et contraintes
numériques. Les années 2000 ont vu s’imposer les modeles locaux et stochastiques, puis
leur synthese aux modeles stochastic local volatility (LSV), qui a permis une tarification
plus précise et une gestion cohérente du smile de la VI pour des exotiques complexes.
Les limites de ces cadres, en particulier en régimes de volatilité extréme ou liés a des
contraintes numériques de calibrations, ont cependant conduit a explorer des paradigmes
alternatifs. Les modeles a volatilité rugueuse, motivés par des observations microstruc-
turelles, constituent 'une des réponses les plus marquantes de la derniere décennie. En
introduisant une mémoire longue dans la variance, ils améliorent I'ajustement de certains
aspects de la surface implicite (skews courts, etc) et ouvrent des perspectives pour le
pricing de produits dépendants du chemin.

Le modele de volatilité locale (LV), introduit par Dupire [10] comme extension du cadre
de Black-Scholes [0], reproduit exactement la surface de volatilité implicite (VI) observée
sur le marché a un instant donné. Ce modele constitue un standard pour la valorisation
des produits dérivés equity vanille (dont le payoff ne dépend que d’une marginale du
sous-jacent a une date de maturité). Cependant, son hypothese centrale d’une volatilité
déterministe dépendant du temps et du niveau du sous-jacent fige la dynamique future
du smile de la VI, générant des évolutions irréalistes de la volatilité [26]. Cette limitation
rend le modele inadéquat pour valoriser des produits fortement path-dependent comme
les Autocalls.

Les modeles de volatilité stochastique (SV), e.g. le modeéle de Heston [22], introduisent
un facteur de volatilité aléatoire pour générer une dynamique plus réaliste de la surface
implicite. Ces modeles demeurent néanmoins difficiles a calibrer parfaitement : le nombre
limité de parameétres restreint leur capacité a ajuster I’ensemble de la surface de volatilité
implicite, particulierement sur les maturités courtes.

Pour surmonter les limitations des approches LV et SV, les modeles de volatilité locale-
stochastique (LSV) ont été développés [23], combinant les avantages de chaque classe. Un
modele LSV correctement calibré permet de valoriser des produits path-dependent de
maniere cohérente avec les prix de marché. Ces modeles présentent toutefois des défis
numériques importants : leur calibration est complexe et requiert un grand nombre d’éva-
luations de prix par simulation Monte-Carlo. Ce cotlit computationnel élevé se retrouve
également lors des simulations, rendant 1'utilisation des modeles LSV significativement
plus cotiteuse que celle des modeles SV [5].

Plus récemment, une nouvelle classe de modeles a été introduite avec le concept de



NEXIALOG

CONSULTING 2

volatilité rugueuse [17]. Ces modeles s’appuient sur ’observation empirique que la vola-
tilité suit une dynamique plus irréguliere que celle modélisée par les processus browniens
classiques, et peut étre mieux décrite par des processus fractionnaires a exposant de Hurst
H < 0.5. Le modele Rough Heston, par exemple, conserve une structure proche du mo-
dele de Heston tout en incorporant cette rugosité dans la dynamique de la variance. Cette
approche capture plus fidelement la structure fine de la surface de volatilité implicite, no-
tamment sur les maturités courtes, ainsi que la persistance temporelle observée en données
haute fréquence.

L’intérét des modeles rugueux réside dans leur cohérence empirique renforcée et leur
potentiel pratique : plusieurs travaux récents (voir [12] et ses références) ont proposé des
méthodes de calibration efficaces rendant leur mise en ceuvre envisageable en environne-
ment opérationnel.

Dans ce contexte, la question centrale de ce travail est d’évaluer I'apport des modeles
de volatilité rugueuse par rapport aux approches LSV, largement utilisées dans I'industrie
pour la valorisation des Autocalls. L’étude consiste a établir un benchmark de pricing &
partir d’'un modele LSV, puis a développer et calibrer un modele Rough Heston afin de
comparer leurs performances en termes de calibrage, de précision de valorisation et de
colit computationnel.

La suite du papier est organisée comme suit : la section 2 présente les fondements
théoriques des modeles LSV et Rough Heston. La section 3 détaille les méthodologies de
calibration développées pour chaque approche. La section 4 expose les résultats obtenus
et leur analyse. Enfin, la section 5 synthétise les apports de cette étude et propose des
perspectives de développement.

2 Modélisation

Cette section présente les différentes classes de modeles de volatilité utilisés pour
la valorisation des produits dérivés equity. L’objectif est de comprendre les limites des
approches traditionnelles et de motiver 'utilisation des modeles de volatilité rugueuse.

2.1 Le modéle de Black-Scholes et ses limites

Le modele de Black-Scholes [6] constitue le point de départ de la modélisation en
finance quantitative. Le sous-jacent S; suit la dynamique :

dSt = TSt dt + O'St th (1)

ou r est le taux sans risque, o la volatilité constante et W, un mouvement brownien.
Ce modele fournit une formule fermée pour le prix d'un call européen :

Cis(So, K, T,0) = SoN(dy) — Ke "N (d-) (2)
n T l0'2
avec dy = ! (SO/K():/(Ti2 )T
Des les années 1980, les cotations d’options révelent que la volatilité implicite varie
selon le strike K et la maturité T'. Cette structure, appelée « smile » de volatilité, contredit
I’hypothese de volatilité constante et nécessite des modeles plus sophistiqués.
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2.2 Modeéles de volatilité locale

Le modele de volatilité locale [10, 9] remplace I'hypothese de la volatilité constante
par une fonction déterministe opy(t,S) :

dSt =T St dt -+ O'L\/<lf7 St) St th (3)
La fonction opy(t, S) est déterminée par la formule de Dupire :

0rC(T,K) +r K 0xC(T, K) n
1 K202,.C(T,K)

U%V<T7 K) =

ou C(T, K) est le prix actualisé d’'un call de strike K et maturité T

Ce modele déterministe présente I’avantage de calibrer exactement la surface de vola-
tilité implicite observée a l'instant initial, reproduisant le smile de volatilité pour chaque
maturité. La calibration s’effectue directement par application de la formule de Dupire sur
une nappe dense de prix de calls et conserve la rapidité des diffusions unidimensionnelles.

Cependant, cet ajustement parfait s’accompagne d’un grand inconvénient. Ce modele
suppose que la structure actuelle des volatilités implicites reste figée, impliquant des dyna-
miques irréalistes des forward smiles. Dans un modele LV, le smile futur est essentiellement
aplati par rapport a I’état initial; la fonction déterministe o(¢,S) tend vers une volati-
lité locale de long terme relativement plate pour les maturités éloignées. Si I'on reprice
des options pour une date future avec le modele, on obtient un smile quasi constant, ne
reflétant pas la forte variabilité empiriquement observée des smiles dans le temps.

Cette limite devient particulierement marquée pour les produits exotiques sensibles au
smile futur, comme les options cliquet ou les autocalls comportant de nombreuses dates
d’observation. Par ailleurs, un modele de volatilité locale ne reproduit pas de maniere
explicite leffet de levier (corrélation empirique négative entre rendements et volatilité,
voir [L1]), sauf a U'intégrer indirectement dans la surface calibrée. Il en résulte un risque
de biais de valorisation pour les produits fortement path-dependent. Plus généralement,
un modele LV tend a sous-estimer le risque d’événements extrémes, la volatilité étant figée
par la calibration initiale.

2.3 Modeles de volatilité stochastique

Les modeles de volatilité stochastique introduisent un second facteur aléatoire pour
faire évoluer la volatilité dans le temps, surmontant ainsi la rigidité des approches détermi-
nistes. Le modele de Heston [22] constitue la référence de cette classe, avec la dynamique
suivante :

dS; = r Sy dt + /v, Sy dW}
dvy = k(0 — 1) dt + &/ AW (5)
d<WS7 Wu>t = pdt

Les parametres r (vitesse de retour a la moyenne), 6 (variance de long terme), £
(volatilité de la volatilité), p (corrélation) et 1 (variance initiale) caractérisent I’évolution
de la variance instantanée selon un processus de type Ornstein-Uhlenbeck avec racine
carrée.

Ces modeles génerent des dynamiques de smile plus réalistes que 'approche locale. La
volatilité implicite devient une variable aléatoire évoluant avec les conditions de marché,
permettant de reproduire des comportements « sticky delta » (la volatilité implicite asso-
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ciée & un méme delta (ou moneyness) reste pratiquement inchangée lorsque le sous-jacent
se déplace, de sorte que le smile “glisse” avec le prix, voir [3]) plutdét quune structure
rigide. La corrélation p capture l'effet de levier empiriquement observé, ou la volatilité
tend a augmenter lors des baisses de marché. En conséquence, les modeles SV évaluent
mieux les produits exotiques dépendant du smile futur, générant des scénarios plausibles
d’évolution de volatilité.

Le modele de Heston appartient a la classe des processus affines, permettant une
expression semi-fermée de la fonction caractéristique [22] et 'utilisation efficace de la
transformée de Fourier rapide pour la calibration [7]. Cette propriété confére a ce modele
un avantage computationnel certain par rapport aux approches purement numériques.

Cependant, le modele de Heston présente des limitations importantes dans la cali-
bration. Avec un nombre restreint de parametres, ils n’arrivent pas a ajuster I’ensemble
de la surface implicite. Un modele de Heston unifactoriel reproduit notamment mal la
forte concavité du smile de court terme observée sur les maturités tres courtes. La rai-
son fondamentale réside dans le fait que ces modeles markoviens classiques imposent une
structure a terme du skew ATM constante pour les petites valeurs de 7' (maturité). Cette
caractéristique les empéche de reproduire la pente abrupte (bien approximée par une loi
de puissance, T a < 0) du smile observée empiriquement lorsque la maturité tend vers
zéro, voir [17].

Pour améliorer I'ajustement, diverses extensions ont été développées, notamment les
modeles SV avec sauts (modele de Bates) ou multi-facteurs, ajoutant de la flexibilité au
smile court terme. Malgré ces améliorations, calibrer précisément un modele SV sur I'en-
semble des maturités et strikes reste difficile. Une limitation supplémentaire des modeles
SV purement markoviens est leur incapacité a reproduire exactement tous les prix vanille :
il subsiste toujours une erreur résiduelle de calibration, ce qui peut s’avérer problématique
pour la couverture des produits exotiques qui requierent généralement un modele repro-
duisant exactement le marché vanille.

2.4 Modeles de volatilité locale-stochastique (LSV)

Pour concilier la calibration exacte des options vanille (avantage des modeles LV) et la
dynamique réaliste du smile (avantage des modeles SV), les modeles hybrides stochastique-
local, notés LSV ont été introduits depuis les années 2000 [23, 241]. Un modele LSV in-
corpore une fonction de volatilité locale £(t,S) ajustée pour assurer I'ajustement exact
des prix vanille, tout en conservant un facteur de volatilité stochastique multiplicatif qui
génere une volatilité instantanée aléatoire :

dSy = r Sydt + £(t, S;)\/v; S; dW (6)

ol 14 suit un processus stochastique (e.g. Heston) et ¢(¢,5) est la fonction de levier a
déterminer.

Le modele LSV doit reproduire le modele LV de sorte que les deux processus aient
des distributions marginales unidimensionnelles identiques et que les prix des options
européennes coincident pour tous les strikes K et toutes les maturités 7. En utilisant
le théoreme de Gyongy [21] (voir Annexe.l), on peut faire correspondre les termes de
diffusion des Eqs. 3 et 6 par :

orv(t,S) = VEQ[(t, S(t))2v(t) | S(t) = S). (7)



NEXIALOG

CONSULTING 5

En réarrangeant cette équation, et puisque £(t,.S) est une fonction déterministe de ¢
et S, on obtient I’expression de la fonction de levier :

o oLv (t, S )

VER[(1)| S(t) = 5]

Les modeles LSV constituent la référence industrielle pour la valorisation des produits
exotiques en equity et de change [20] car ils décrivent simultanément le cotit du hedging
statique et dynamique du smile. Un modele LSV correctement calibré est arbitrage-free
sur les options vanille et permet de valoriser les produits path-dependent de maniere
cohérente avec les observations de marché. Cette capacité a reproduire exactement la
surface implicite tout en préservant une dynamique stochastique réaliste explique leur
adoption généralisée pour les autocalls et autres dérivés complexes.

Cette puissance de modélisation vient cependant avec une complexité de calibration
et de calcul significativement plus élevée. La calibration d’'un modele LSV requiert des
boucles itératives imbriquant simulations Monte-Carlo ou résolutions d’équations aux dé-
rivées partielles pour ajuster la volatilité locale en présence du facteur stochastique. Ce
processus est computationnellement intensif pour une calibration complete. La simula-
tion d’un modele LSV est également plus cotliteuse que celle d'un modele SV pur, car
la volatilité effective ¢(t,S;)\/v¢ doit étre évaluée a chaque pas de temps, augmentant
considérablement les temps de calcul [¢].

Ces contraintes temporelles posent des défis pratiques sur les marchés de produits
structurés, ou la rapidité de réponse aux demandes de cotation est cruciale. Des approches
récentes cherchent a accélérer les modeles LSV par des techniques d’apprentissage auto-
matique, notamment l'entrainement de réseaux de neurones [5].

((t,S) (8)

2.5 Modeles de volatilité rugueuse

Depuis le milieu des années 2010, une nouvelle classe de modeles de volatilité a émergé
pour surmonter les limitations des approches classiques : les modeles a volatilité rugueuse.
Ces modeles se caractérisent par une dynamique de variance présentant une mémoire frac-
tionnaire et une régularité holderienne faible, contrastant avec les diffusions de volatilité
lisses de type brownien standard. Les trajectoires de variance apparaissent plus irrégulieres
que celles prédites par les processus de diffusion usuels.

Cette approche a été popularisée par les travaux de Gatheral et al. [19, 1] qui, en
analysant des séries temporelles haute fréquence de volatilité réalisée, ont démontré que
I'exposant de Hurst effectif de la volatilité est significativement inférieur a 0,5 (typique-
ment 0,1-0,3). Cette observation suggere une structure de volatilité non-markovienne a
mémoire longue [11]. Gatheral [19] formalise cette intuition et démontre qu'un processus
de variance fractionnaire simple reproduit mieux les propriétés empiriques des volatilités
tout en s’ajustant efficacement a la surface implicite.

Le modele Rough Heston constitue une extension directe du modele de Heston clas-
sique ou le noyau exponentiel de la variance est remplacé par un noyau a mémoire longue
de type puissance. Mathématiquement, la variance 1; suit un processus de Volterra-
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Ornstein-Uhlenbeck défini par :

dS; = 1 Sy dt +\/V; S; AW}

yt:V0+/OtK(t—s)/<a(0—X/s)ds+/0tK(t—s)§\/ZdWsl’ -
H-1/2
K(t) = M He(0,1/2)

ou K est le noyau fractionnaire et H ’exposant de Hurst controlant la rugosité.

Contrairement au modele de Heston standard ou la covariance de la variance décroit
exponentiellement, le Rough Heston présente une autocorrélation a décroissance en loi de
puissance : Cov(v;, vpy,) ~ 7171 Cette propriété permet de capturer la persistance a
long terme observée empiriquement dans les données de volatilité.

Malgré la non-markovianité introduite par le noyau fractionnaire, Gatheral [1%] a établi
que le modele Rough Heston appartient a la famille des modeles affines de variance for-
ward. Cette structure préserve la possibilité de calculs semi-analytiques via une fonction
caractéristique explicite, facilitant la calibration aux options européennes.

El Euch et Rosenbaum [11] ont obtenu I'expression de la fonction caractéristique du
log-prix en résolvant une équation de Riccati fractionnaire [12]. La fonction caractéristique
s’écrit :

&(u; T) = exp[A(T,u) + B(T,u) vy + tuln Sp) (10)

ou les fonctions A(T',u) et B(T,u) sont solutions d’équations de Riccati fractionnaires ré-
solues par discrétisation quadratique. Théoriquement, le modele Rough Heston reproduit
fidelement plusieurs phénomenes empiriques que les modeles classiques peinent a capturer.
Il génére une pente de skew ATM qui diverge en TH =12 pour les maturités trés courtes
(voir [17], contrairement a la structure constante (pour T petit) des modeéles markoviens.
Cette propriété corrige le déficit des modeles traditionnels dans la modélisation du smile
de court terme.

La calibration s’effectue efficacement grace a la structure affine préservée, avec un
coiit computationnel tres significativement supérieur au Heston classique (d’un facteur 10
sur applications) mais restant compatible avec 'usage industriel. El Euch et al. [13] ont
également confirmé que le modele reproduit 1'effet Zumbach [13] : autocorrélation asymé-
trique entre volatilité réalisée et futurs, un phénomene empirique ou les rendements passés
prédisent mieux la volatilité future que 'inverse. Contrairement aux modeles markoviens
classiques (comme Heston) qui sont temporellement symétriques et échouent a capturer
cet effet

Le modele Rough Heston offre un formalisme plus riche que les approches classiques :
avec H = 0,5, il redonne le Heston standard, tandis que des valeurs H =~ 0,1 cap-
turent les propriétés de rugosité empiriquement observées. Cette flexibilité, combinée a
une meilleure cohérence avec les données de volatilité, positionne le Rough Heston comme
une alternative prometteuse pour la modélisation des dynamiques de volatilité complexes.

2.6 Impact du modele sur le pricing des exotiques

L’utilisation d’un modele de volatilité inadapté peut entrainer des erreurs significatives
dans la valorisation d'un autocall. Il a été montré qu'un modele local, méme calibré sur
les mémes vanilles qu’un modele stochastique, conduit souvent a un prix biaisé pour un
produit & barriere de type knock-out [19]. En particulier, une option knock-out forward
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est systématiquement moins chere sous un modele local que sous un modele de Heston
calibré de facon équivalente, avec des écarts parfois substantiels. Ce biais provient du fait
que le modele local, dépourvu de volatilité future aléatoire, surestime la probabilité de
toucher la barriére et sous-évalue ainsi la valeur conditionnelle de option. A Pinverse, les
modeles stochastiques (SV, LSV) incorporent la variabilité future de la volatilité et I'effet
de levier, ce qui explique leur usage privilégié pour la valorisation des autocalls.

3 Calibration des modeéles

3.1 Données de marché

Les données utilisées dans cette étude proviennent de Yahoo Finance et concernent les
options européennes sur l'indice S&P 500 observées le 3 juillet 2025. A cette date, le niveau
de l'indice s’établit a Sy = 6278,12 USD. Le taux sans risque retenu pour 'actualisation
correspond au taux swap USD a 4 ans, fixé a r = 3,86% et appliqué de maniére constante
sur I'ensemble des maturités considérées.

Les prix d’options considérés correspondent aux mid prices, définis comme la moyenne
arithmétique des cours bid et ask, conformément aux conventions de marché. A partir
de ces cotations, les volatilités implicites nécessaires a la calibration des modeles sont
calculées par inversion numérique de la formule de Black-Scholes.

Le choix du S&P 500 comme sous-jacent de référence se justifie par plusieurs facteurs :
la liquidité de cet indice, la profondeur de son marché d’options, et la prépondérance des
produits structurés autocallables émis sur ce type de grands indices equity. L’utilisation
d’options européennes sur indice présente également 'avantage d’éviter les complexités
liées au traitement des dividendes discrets, simplifiant ainsi I'estimation des volatilités
implicites.

Opportunités d’arbitrage

Les cotations d’options observées sur le marché présentent parfois des incohérences
théoriques constituant des opportunités d’arbitrage. Ces incohérences, contraires a ’hy-
pothese d’efficience, proviennent de facteurs pratiques tels que la microstructure de mar-
ché, les cotlits de transaction, les contraintes de liquidité, ou les erreurs temporaires de
cotation.

D’un point de vue théorique, 'absence d’arbitrage impose plusieurs contraintes sur
les prix d’options européennes. Pour des options de méme maturité T, les prix de call
C(K,T) doivent satisfaire les conditions suivantes :

— Monotonicité : % <0

92C(K, T)
—5er— =0

— Bornes : max(Sy — Ke™"7,0) < C(K, T) < Sy (bornes d’arbitrage)

Les graphiques présentés (Figures la—1c) illustrent les cotations de marché pour trois
maturités représentatives, ou les points cerclés en rouge signalent les violations manifestes
de ces conditions d’absence d’arbitrage. .

— Convexité :
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FI1GURE 1 — Cotation de marché des calls pour trois maturités représentatives.

L’observation de telles violations dans les données de marché s’explique par plusieurs
mécanismes :

1. Asynchronisme des cotations : les prix bid/ask de différents strikes peuvent étre
mis a jour de maniere non simultanée

2. Contraintes de liquidité : certains strikes peu liquides présentent des spreads
importants générant des incohérences temporaires

3. Colits de transaction : 'exploitation effective d’un arbitrage peut étre rendue
non profitable par les cotits associés

Filtration

Pour garantir la qualité des données utilisées dans la calibration, nous avons mis en
place des filtres systématiques pour éliminer les cotations non exploitables ou aberrantes.
Les criteres d’exclusion que nous avons définis comprennent d’abord les cotations présen-
tant une inversion des cours (ask < bid), les options expirées (maturité résiduelle 7' < 0),
les mid prices négatifs ou nuls, ainsi que les violations manifestes des conditions d’arbi-
trage identifiées visuellement. Nous excluons également les options présentant des spreads
bid-ask tres élevés (indicateur de faible liquidité), les volatilités implicites calculées en
dehors d’'une plage de cohérence économique, et les points isolés créant des discontinuités
importantes dans le smile.

Ce protocole de filtrage permet d’éliminer environ 10% des cotations initiales, concen-
trant I’analyse sur des données de qualité supérieure et économiquement cohérentes.

Synthése du jeu de données final

Apres application du protocole de filtrage, le jeu de données final comprend 18 ma-
turités s’échelonnant de 3 mois a plus de 5 ans, représentant un total de 2396 cotations
d’options. La répartition par maturité est présentée dans le tableau ci-dessous :
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TABLE 1 — Synthese du jeu de données apres filtrage

Maturité ~ Temps jusqu’échéance (années) Nb strikes Strike ATM  Prix call ATM ($)

2025-09-30 0,24 437 6275 156,40
2025-10-31 0,33 182 6275 184,70
2025-11-28 0,40 127 6275 205,80
2025-12-31 0,49 246 6275 228,15
2026-01-16 0,54 172 6275 236,75
2026-02-20 0,63 157 6275 256,95
2026-03-31 0,74 128 6275 278,20
2026-04-17 0,79 156 6275 285,45
2026-05-15 0,86 155 6275 299,40
2026-06-30 0,99 6] 6275 321,40
2026-07-17 1,04 79 6250 321,30
2026-09-18 1,21 113 6275 355,35
2026-12-18 1,46 149 6275 387,20
2027-06-17 1,95 69 6275 441,40
2027-12-17 2,45 85 6250 477,85
2028-12-15 3,45 52 6200 528,95
2029-12-21 4,47 49 6200 582,10
2030-12-20 0,46 46 6200 618,25

Prix des calls (mid) en fonction du strike Prix des calls (mid) en fonction du strike Prix des calls (mid) en fonction du strike

Maturité 18/06/2026 200 Maturité 15/12/2028 Maturité 20/12/2030
(a) Maturité 18/06/2026 (b) Maturité 15/12/2028 (c) Maturité 20/12/2030

FIGURE 2 — Prix des calls (mid) en fonction du strike pour trois maturités lointaines.

3.2 Surface de volatilité implicite

Les prix de marché des options ne sont observés que sur une grille discréte de strikes et
de maturités. La construction d’une surface de volatilité continue et différentiable s’avere
nécessaire pour plusieurs raisons. D’abord, I'application de la formule de Dupire pour
le calcul de la volatilité locale requiert une surface suffisamment lisse pour permettre le
calcul numérique des dérivées partielles. Ensuite, la calibration des modeles de volatilité
stochastique nécessite une évaluation de la fonction caractéristique sur une grille dense
de strikes, dépassant les points de cotation disponibles. Pour construire cette surface
dense, nous avons choisi une approche basée sur le paramétrage eSSVI (extended Surface
SVI). Cette méthode présente I'avantage de garantir 1'absence d’arbitrage de la surface
interpolée et offre une flexibilité pour reproduire fidelement les smiles observés.

Pour chaque maturité T;, nous calibrons la variance totale w(T;, k) a 1'aide du para-
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métrage eSSVI défini par les parametres (6;, p;, ;) :

w(T k) = 5 (6-+ pesk+ ek + i + 1 22) (11)

ou k=1In (FOKT> représente le log-moneyness forward et Fp 7, le prix forward a maturité

-
Ce paramétrage, développé initialement par Gatheral et Jacquier [16], garantit le res-
pect des conditions d’absence d’arbitrage. Spécifiquement, il assure la cohérence butterfly
(positivité de la densité risque-neutre) et la cohérence calendar (croissance de la variance
totale avec la maturité) de la surface construite [25].
La calibration des parametres eSSV s’effectue par minimisation au sens des moindres
carrés de I’écart entre les variances totales de marché et celles prédites par le modele :

(07, p;,¥;) = arg (g,n;i%,.)z (Wit (T3, k) — wessvi(Ty, ks 63, piy ¥3))° (12)
My j

sous contraintes d’absence d’arbitrage.

T=0.2115 (77 days) T=0.2882 (105 days) T=0.4032 (147 days)

Market

-0.4 -0.2 0.0 0.2 0.4
k

T=0.5374 (196 days) T=0.7400 (270 days) T=0.9562 (349 days)

x  Market * x  Market Market
0.35 — eSsVI — eSsvI 0.30 — essvi

-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4
k k k

T=1.2081 (441 days) T=2.4538 (896 days) T=5.4627 (1994 days)

Market
— essvi

0.300f * 0.24f >

0.26

0275 024 022 Ty

0.250 0.22 0.20

0.225

© o 020 «© 0.18
0.200 0.18

0.16

0.175 016

0.150 014 0.14

0.125 0.12

0.12

FIGURE 3 — Smiles de volatilité eSSVI ajustés sur les options standards S&P 500 au 03
juillet 2025, dans I'espace log-moneyness forward k et volatilité implicite. Les points bleus
représentent les volatilités implicites, et la courbe rouge correspond a ’'ajustement eSSVI.

3.3 Calibration du modeéle de volatilité locale

A partir de la surface de volatilité implicite oymp (17, K) calibrée via eSSVI, nous recons-
truisons les prix d’options européennes C(T, K) a l'aide de la formule de Black-Scholes.
Nous calibrons le modele de volatilité locale en appliquant directement la formule de
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Dupire (4) sur la surface de prix construite.

Prix des calls - Maturité 2026-06-18 Prix des calls - Maturité 2028-12-15 Prix des calls - Maturité 2030-12-20
85 price (dense IV)

700 BS price (dense IV) 1400 BS price (dense IV)
1750 X Market call price

X Market call price X Market call price

x
400 N
x
200 X
Koy
0

e e — ¥
6000 7000 8000 9000 10000 11000 12000 6000 7000 8000 9000 10000 11000
Strike Strike

Prix du call ($)
N ow s ou
3 & 8
38 8 8
Prix du call (
Y
3
3
x
Prix du call ($)

1
3

°

x
0
12000 6000 7000 8000 9000 10000 11000 12000
Strike

(a) Maturité 18/06/2026 (b) Maturité 15/12/2028 (c) Maturité 20/12/2030

F1GURE 4 — Comparaison entre les prix de calls calculés via la surface eSSVI et les prix
de marché pour trois maturités.

Les dérivées partielles nécessaires, 0rC, xC' et 9%, C, sont calculées par différences
finies sur la grille densifiée (T, ). Pour limiter 'amplification du bruit numérique lors
du calcul de la dérivée seconde 9% C, une régularisation de Tikhonov est appliquée sur
la surface des prix, améliorant la stabilité numérique de la procédure.

L’exigence d’une surface implicite sans arbitrage (butterfly et calendar) est cruciale
pour assurer la stabilité numérique de la formule de Dupire, particulierement pour le terme
au dénominateur K? 9% C, et garantir I'interprétation probabiliste correcte du modele
par la positivité de la densité risque-neutre.

La figure 6 illustre la comparaison entre les prix de calls calculés via la surface eSSVI
(courbe bleue) et ceux obtenus par résolution de I’équation aux dérivées partielles de
Dupire (courbe orange) pour différentes maturités.

La calibration du modele de Dupire présente une erreur quadratique moyenne (RMSE)
de 12,14 USD, correspondant a une erreur absolue moyenne en pourcentage (MAPE) de
4.9%. Plus de 91% des prix modélisés se situent & moins de 10% des prix observés sur le

marché.

Local Volatility Surface o_LV(T,K)
(Dupire Model)
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FIGURE 5 — Surface de volatilité locale oy (7T, K) obtenue par calibration de Dupire.
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FIGURE 6 — Validation de la calibration Dupire : comparaison entre les prix eSSVI et les
prix obtenus par ’équation de Dupire pour différentes maturités.

Théoriquement, la construction du modele de volatilité locale selon Dupire permet de
reproduire exactement les prix de marché sur I’ensemble de la surface, en ’absence de
bruit et d’imperfections, la formule s’appuyant directement sur les dérivées des prix d’op-
tions. Cependant, les prix observés intégrent du bruit de cotation, des erreurs de marché
et parfois une liquidité limitée, notamment pour les strikes extrémes. L’interpolation et
le lissage préalables de la surface des calls, destinés a corriger ces erreurs potentielles, in-
troduisent un biais numérique et expliquent la présence d’un résidu d’erreur, de sorte que
I’ajustement n’est pas parfaitement exact, mais reste tres proche de la surface observée.

OTM Call Prices OTM Call Prices OTM Call Prices
Expiry: 2026-06-18 (T=0.96 yrs) Expiry: 2027-12-17 (T=2.45 yrs) Expiry: 2030-12-20 (T=5.46 yrs)
400 x Market OTM Call Price x Market OTM Call Price 1000 X Market OTM Call Price
) Local Vol Model Price (OTM) 600 Local Vol Model Price (OTM) % Local Vol Model Price (OTM)
3500 % x
3 x
3000 % s00f % 800
3
% x

° 250 % o 400 x N X
S % £ X g 600 N
& 200 % & x £
ol 3% 3 .

150 x 400

X 200
100 X X
* x x
50 x 100 x 200
Xx X x x
0 e * x 0 XX x x x x
6500 7000 7500 8000 8500 9000 9500 10000 10500 7000 8000 9000 10000 11000 12000 8000 9000 10000 11000 12000
trike Strike Strike

(a) 18/06/2026 (b) 17/12/2027 (c) 20/12/2030

FIGURE 7 — Prix des calls OTM : comparaison marché (points) et modele de volatilité
locale (ligne) pour trois maturités.

Comme expliqué précédemment dans 2.2, le modele de volatilité locale induit un apla-
tissement progressif des smiles de volatilité forward lorsque 1’on considere des options a
départ différé (forward-start options). La Figure 8a met ce phénomene en évidence sur nos



NEXIALOG 13

données : plus la date de départ t; est lointaine, plus le smile forward s’aplatit, jusqu’a
devenir quasi-linéaire pour les échéances éloignées. La Figure 8b compare explicitement le
smile forward a t; = 0 et a t; = 2.41 ans, soulignant la réduction marquée de 'amplitude
et du skew.

0.40 0.40

— 11 = 0.00 —t1 = 0.00
— 11 =043 — = 2.41
— t = 0.99
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0.35 =241 0.35
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Implied Volatility
°
I
&

e 4
= ]
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°
)

5000 6000 7000 8000 5000 6000 7000 8000
Strike Strike

(a) Evolution empirique du smile de volatilité  (b) Comparaison du smile forward & t; = 0 et
forward pour différents ¢;. t1 = 2.41 ans (aplatissement).

FIGURE 8 — Analyse du comportement des smiles de volatilité forward a la valeur du
spot.

3.4 Calibration du modéle de Heston

Heston [22] démontre que le prix d'un call européen sous le modele (5) peut s’expri-
mer sous forme d’intégrale semi-fermée en utilisant la fonction caractéristique jointe du
processus. Cette formulation évite la simulation Monte-Carlo lors de la calibration aux
options vanille et permet une évaluation rapide des prix.

Pour accélérer le calcul des prix sur une grille dense de strikes, nous utilisons la mé-
thode de transformée de Fourier rapide (FFT) proposée par Carr et Madan [7]. Cette
approche évalue efficacement les prix d’options pour ’ensemble des strikes a partir de la
fonction caractéristique du log-prix :

—ak

e < [e ™ ¢p(u—i(a+1); 0)
T /o ER[ (o +iu) (o +iu+1) du (13)

Co(K,T) =

ou k = In(K/Sy) représente le log-moneyness, ¢r(u; ) la fonction caractéristique du
log-prix sous le modele de Heston, et @ > 0 un parametre assurant la convergence de
I'intégrale.
Nous ajustons le vecteur de parametres @ = (g, 6, K, £, p) en minimisant U'erreur qua-
dratique moyenne sur les volatilités implicites :
1 2
LO) == > (™T,K)) - 0™NT;, K;: 0)) (14)

’D| (4,7)€D

ou D représente I’ensemble des couples (maturité, strike) retenus apres filtrage, et RMSE, (8) =

L(0) lerreur quadratique moyenne résultante.
Les bornes de calibration sont définies comme suit :

vy, 0 € [1074,1.0], K €[0.1,8.0], ¢£¢€10.01,5.0], pe[-1,1]
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Le tableau 2 présente les parametres calibrés ainsi que 'indicateur de qualité global. La
figure 10 illustre I'ajustement obtenu sur la surface de volatilité implicite et la comparaison
avec les prix de marché pour différentes maturités.

TABLE 2 — Parametres calibrés du modele de Heston (3 juillet 2025)

Vo 0 K ¢ p RMSE, (vol-pts)

Valeur 0,0177 0,0242 2,363 0,337 -0,503 0,0074

Heston IV Surface

°
=
®

mplied Volatility

0.16

0.12

FIGURE 9 — Surface de volatilité implicite reproduite par le modele de Heston calibré.

nnnnnnnnnnnnnnn

(a) 18 juin 2026 (b) 15 décembre 2028 (c) 20 décembre 2030

FIGURE 10 — Comparaison des prix de calls entre le marché (points) et le modele de
Heston calibré (ligne) pour trois maturités représentatives.

3.5 Calibration du modeéele LSV Heston

Nous avons obtenu opy(t,S) par calibration de la surface de volatilité locale, et la
dynamique de v; par la calibration du modele de Heston. La calibration LSV consiste a
construire £(t,S) telle que (8) soit satisfaite sur une grille (¢,,, S;) et que les prix vanilles
du modele LSV reproduisent le marché.
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Pour estimer E[v, | S; = S| nous simulons N trajectoires sous Heston-LSV courant
(avec ¢ fixée) et on estime, aux temps t,,, 'espérance conditionnelle via une régression
noyau :

N Kn(S; — S v z’

SN K5, smy @ =ew{—pn ) (19)

Elw,, | S, = 5;] =

et ou la bande passante h; est fixée a h = 0.1 x Sy pour chaque tranche temporelle. Nous
appliquons ensuite (16) point par point, avec une relazation pour stabiliser :

b o (tm, S;) 7
VE® [y, | S, =S

D (1,,85) = (1= 1) 9 (1, ) ne (0.1, (16)

Leverage Surface (0.2 =T < 5.3yr)
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(a) Leverage function {(t,s) calibrée sur les options (b) Smile de volatilité du S&P500 im-
S&P 500 au 3 juillet 2025. avec M = 50000. plicite sous le modele LSV

FIGURE 11 — Surfaces calibrées sur options S&P 500 au 3 juillet 2025.
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FIGURE 12 — Comparaison des prix de calls : marché (points) vs modele de LSV (ligne)
pour trois maturités.

3.6 Calibration du modeéle Rough Heston

Le modele Rough Heston (9) étend le modele de Heston classique en introduisant
une mémoire fractionnaire dans la dynamique de la variance. La calibration repose sur
la résolution numérique d’équations de Riccati fractionnaires pour obtenir la fonction
caractéristique, puis sur I'inversion de Fourier pour le calcul des prix d’options [12].



NEXIALOG 16

Omar et al [I2] montrent que la fonction caractéristique du log-prix s’écrit, comme
dans Heston, via une équation de Riccati, mais fractionnaire. Plus précisément, si h(a,-)
résout

Dyh(a,t) = Fla,h(a,t)),  I}""h(a,0) =0,

avec D% la dérivée de Caputo, I'~® l'intégrale fractionnaire, et
Fla,z) = Y(—a®—ia) + A(iapr — 1)z + $(\w)*2?,

alors la fonction caractéristique vérifie

$(a,T) = exp<A9 I h(a, ) dt+Ve i h(a,") )

I'h(T) ey o (T—t)=eh(a.t) dt
La CF du log-Sr s’obtient en multipliant par e**(logSo+rT),
Pour résoudre la Riccati fractionnaire, nous utilisons le schéma prédicteur-correcteur
d’Adams—Bashforth-Moulton décrit dans [12], basé sur la forme de Volterra

h(a,t) = F(loz) /Ot(t —5)* ! F(a, h(a, s)) ds.

Les prix d’options vanille sont ensuite calculés par la méthode FFT de Carr-Madan
[7], utilisant la méme formulation que pour le modele de Heston classique (13) mais avec
la fonction caractéristique fractionnaire :

—ak

%) —iuk rHeston s 1) @)
rHeston K.T) = € € ¢T (U Z(Oé + ) 1
Co ™" (K. T) m /o %[ (a+iu)(a+iu+1) du (17)

ou ® = (H, A\, 0,v,p, 1) représente le vecteur des parametres du modele Rough Heston.
Nous calibrons en minimisant 1’erreur quadratique sur les volatilités implicites :

min Y (Vioa (K3, Tj ©) = Wi (K, T))° (18)
%]

Nous utilisons une approche multi-démarrages combinant une phase globale par algo-
rithme évolutionnaire (Differential Evolution) suivie d’un raffinement local par L-BFGS-B.
Les contraintes sur les parametres sont définies par :

H € (0,05), A>0, >0, v>0, pe(=1,1), 1v,>0 (19)

Le tableau 3 présente les parameétres calibrés et 1’erreur moyenne obtenue. La figure 13
compare les volatilités implicites de marché et celles générées par le modele calibré pour
plusieurs maturités.

TABLE 3 — Parametres calibrés du modele de Rough Heston et erreur quadratique
moyenne (RMSE).

H A 0 v p Vo RMSE
0.2561 1.0787 0.0847 0.6426 -0.7323 0.0210 0.0021
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F1GURE 13 — Calibration du modele de Rough Heston : comparaison entre les volatilités
implicites de marché (points rouges) et celles générées par le modele calibré (courbe bleue)
pour plusieurs maturités.

L’ajustement obtenu est globalement satisfaisant sur ’ensemble des maturités, y com-
pris dans les zones hors-la-monnaie ou le modele de Heston classique présente généra-
lement des limitations. L’exposant de Hurst calibré (H = 0,2561) confirme la présence
de rugosité dans les données de volatilité du S&P 500, cohérente avec les observations
empiriques de la littérature.

Nous remarquons de légeres irrégularités locales dans les smiles ajustées. Ces arté-
facts proviennent principalement des parametres numériques de la FFT (taille de grille,
troncature fréquentielle) plutét que de limitations structurelles du modele.

Le cotlit computationnel de la calibration est environ dix fois supérieur a celui du
modele de Heston standard, principalement dii a la résolution des équations fractionnaires.

Afin de mieux évaluer la qualité du calibrage du modele, I’ensemble des données de
marché a été séparé en deux sous-ensembles distincts : un jeu d’entrainement utilisé
directement lors de la calibration des parametres, et un jeu de validation completement
tenu a l’écart de 'optimisation. Cette approche permet de distinguer I'erreur de calibration
(mesurée sur le train) de l'erreur de prédiction (mesurée sur le test), et donc d’évaluer
la capacité du modele a généraliser au-dela des points utilisés pour 'ajustement. Les
figures suivantes illustrent cette superposition marché/modeéle pour plusieurs maturités
représentatives sous le modele de Rough Heston.
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Rough Heston — IV Surface 03/07/2025

0.275

mplied Volatility

FIGURE 14 — Surface de volatilité implicite obtenue sous le modele de Rough Heston
(03/07/2025). La surface est représentée en fonction du strike K (axe x) et de la maturité
T (axe y).

La figure 14 présente la surface de volatilité implicite générée par le modele. La struc-
ture en maturité est cohérente avec les données : les maturités courtes présentent des
niveaux de volatilité plus élevés, qui diminuent progressivement avec I’échéance.

Rough Heston — Overlay — T = 3.450427 years Rough Heston — Overlay — T = 1.208128 years Rough Heston — Overlay — T = 0.211550 years
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FIGURE 15 — Superposition marché / modéle (train et validation) pour plusieurs maturités
sous Rough Heston.

4 Pricing des Autocallable Barrier Reverse Conver-
tibles (ABRCs) :

Dans cette section, on s’intéresse au pricing d’'une catégorie populaire de produits
structurés, les autocallable barrier reverse convertibles (ABRC). Plus précisément, nous
comparons la valorisation des dérivés exotiques Athéna sous les dynamiques Heston-LSV
et rHeston. Dans toute I'analyse, nous supposons que les flux sont actualisés au taux sans
risque, négligeant ainsi le risque de crédit de I’émetteur du produit.
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4.1 Les BRC

Typiquement, un structuré BRC se décompose en un zéro-coupon, une position short
sur une option put barriere down-and-in, et une série de coupons. Ces coupons peuvent
eux-mémes étre soumis a condition : ils sont parfois conditionnés a I’évolution de l'actif
sous-jacent a certaines dates d’observation intermédiaires (et donc sensibles a des barrieres
du type down-and-out) ; ou garantis de fagon inconditionnelle.

La fonction d’autocall ajoute au produit une caractéristique de remboursement anti-
cipée via des barrieres up-and-out : si, a une date d’observation, la barriére est franchie,
la note est immédiatement remboursée au pair et le coupon de la période est versé [15].

En environnement de taux d’intérét bas, ces produits offrent des coupons plus élevés
et une probabilité non négligeable de remboursement anticipé quand le sous-jacent est
stable ou en légere hausse. En contrepartie, ils portent un downside tail risk marqué en
cas de knock-in et cloture finale sous le strike, et présentent une forte dépendance au
modele (dynamique de smile, corrélation spot—vol) ainsi qu’une couverture cotiteuse [15].

Sur des autocalls US, les écarts prix—valeur persistent sous des modeles naifs (Black
— Scholes / LV) et se réduisent lorsque la volatilité stochastique est introduite [2], ce qui
révele que la « fair value » est trés sensible au choix de modéle. Opérationnellement, une
sous-tarification (ou sur-tarification) systématique induit des erreurs sur les probabilités
d’autocall /knock-in, des grecs mal calibrés et donc un P&L de couverture instable, en
particulier pres des barrieres et des dates d’observation; d’ou la nécessité de recourir a
des cadres qui reproduisent la covariance spot—vol et la smile forward pour obtenir des
prix et des risques fideles [15].

4.2 Modélisation des Autocallable Athéna

Pour notre étude, nous avons choisi un exemple des produits ABRC : les Athéna. Les
produits Athéna ne versent aucun coupon pendant la vie du produit ; tous les coupons sont
payés au moment de la cloture (rappel anticipé ou maturité) si la condition est satisfaite.
A chaque date d’observation T}, si le sous-jacent est au moins au niveau A, (souvent
A; = Sp), le produit est rappelé au pair et I'investisseur regoit N plus un coupon mémoire
égal au cumul par année écoulée depuis émission. A maturité, si aucun rappel n’a eu lieu,
I'investisseur récupere le capital N et recoit le cumul des coupons uniquement si S, > Ay
(sinon N seul). Il n'y a pas de jambe reverse-convertible ni de barriere knock-in dans cette
version a capital garanti.

Le temps d’autocall 7,. correspond a la premiere date d’observation T; a laquelle le
sous-jacent atteint ou dépasse le niveau d’autocall A;. Si aucune date ne satisfait cette
condition, on consideére que 7,. = +00. On a alors :

Tac =If{T; € T : Sp, > A; }, (inf @ :=+00), " =min{i: T; = T},
et les coupons cumulés Y; := NZj-:l C; (avec C; = C'Aj). Notons 7 := min(r,., Tn) et

i(T) =4 8i T = Ty, sinon i(7) = N.
Le payoft du produit s’écrit alors de maniere suivante :

IT = D(0,7uc) (N + Vi) Lpocryy + D(0,T) <N Y L, STNZAN}).

(i) si un autocall est exercé, I'investisseur regoit le capital N plus le cumul des coupons
Y- actualisé a la date 7,.. On a alors le versement de N + Y« a T;«
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(ii) Tandis qu’en I’absence d’autocall, le paiement & maturité correspond au capital N
augmenté des coupons cumulés seulement si la condition sur le sous-jacent a maturité est
respectée, c’est-a-dire Sty > Ay. On a alors le versement de N + Yy 15, >4} (sinon N
seul)

paramétres du produit

Objet Symbole Définition / Interprétation

Sous-jacent (St)eeo,rn]> So Processus de prix et niveau initial.

Dates d’observation T ={T\,...,Tn} Tests d’autocall (Bermudan).

Pas de temps N =T, —T,_4 Intervalle entre observations.

Niveau(s) d’autocall A; = Ba(T;) So Seuils (souvent A; = Sy ; possible
step-down).

Nominal N Montant notionnel.

Coupon de période C; =CA; Mémoire Athéna : acquis par année

écoulée, payé a la cloture.
Facteur d’actualisation — D(0,t) Actualisation au taux sans risque.

Sur la figure 16, des trajectoires du sous-jacent d’'un Ahténa sont affichés. On peut
observer que des que celui-ci atteint la barriere d’activation de I’autocall, le remboursement
est effectif et il n’est plus utile de simuler le sou-jacent jusqu’a la maturité

(B) Coupon paid at closure (snowball; principal excluded)

B Scenario 1
B Scenario 2
B Scenario 3
[ Scenario 4
[ Scenario 5

T T T3 Ta
t

(b) Cash-Flow par date d’observation (hors
(a) Scénarios de la trajectoire du sous-jacent  principal). A Ty

(A) Underlying paths

= Scenario 1
—— Scenario 2
= Scenario 3
~— Scenario 4

Scenario 5

S(t)/5(0)
-
)

u i i
NN WL

OHINUAUION0OOHL IGO0 OHIULAUIOTSOOOALUALOTN

f i
~u
- =l
S —
Coupon (fraction of notional)

0.9

0.8 1

Ts

FIGURE 16 — Scénarios illustratifs pour I’Athéna. Les barrieres d’autocall sont testées de
type Bermudan.

4.3 Pricing sous le modele LSV

Le payoff des produits Athéna, de nature fortement path-dependent, est évalué par
simulation Monte Carlo. La dynamique du modele LSV est discrétisée a 'aide du schéma
d’Euler-Maruyama. Pour un pas de temps At, on a :

St+at = St exp((r —10(t,5) V})At + 0(t, S )\ ViAt ZS),

Viear = Vi +6(0 — Vi) At + &Y VAL ZY
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avec corr(Z°,ZV) = p.

La grille de simulation est construite de maniere a inclure explicitement toutes les dates
d’observation, ce qui permet de traiter les franchissements de barrieres. Une réduction de
variance est obtenue par 'utilisation de variables antithétiques. Les probabilités d’autocall
et de survie sont estimées directement a partir des trajectoires simulées.

4.4 Pricing sous rHeston

La dynamique du modele Rough Heston est non markovienne, ce qui empéche I'appli-
cation directe d’un schéma d’Euler—-Maruyama sur la variance. Pour rendre la simulation
exploitable, nous utilisons la méthode de Markovian lifting [1, 12], qui consiste & approxi-
mer le noyau fractionnaire

s

Ru(t) = T(H+1)

par une combinaison finie d’exponentielles :
N
Kyt) =) wje ™"
j=1
On introduit alors N processus auxiliaires (Y;(j ) )j=1,...~ définis par
vV = —a:th(J) dt + wjé\/vtthV, avec V, ~ ZYt(]).
j=1

La variance devient ainsi une combinaison markovienne de processus d’Ornstein—
Uhlenbeck, ce qui permet d’appliquer un schéma d’Euler-Maruyama standard pour simu-
ler (S, Y;(l), e ,Y;(N)) sur une grille de discrétisation contenant explicitement les dates
d’observation.

4.5 Comparaison des deux modeles

Nous avons utilisé les modeles LSV et rheston calibrés sur les options européennes afin
de pricer les Athena

Le tableau 4 met en évidence les forces, faiblesses et contraintes opérationnelles des
deux modeles, LSV et rHeston, en termes de complexité de calibration, cofits de calcul
et simulation. Le modele LSV offre un léger avantage en termes de qualité d’ajustement.
Les différences restent cependant marginales, indiquant que les deux modeles parviennent
a reproduire la surface de volatilité implicite de maniére globalement satisfaisante. Tou-
tefois, LSV reproduit mieux les maturités longues, tandis que Rough Heston fournit un
meilleur ajustement en maturités courtes, cohérent avec la présence d’une volatilité plus
“rugueuse” et réaliste & court terme (effet empirique bien documenté). Ainsi, les modeles
sont comparables en précision globale, mais optimisés pour des zones différentes de la
surface.

En termes de complexité numérique, les deux modeles présentent des contraintes fortes
mais de nature différente. Le modele LSV impose une chaine de calcul particulierement
lourde : sa calibration requiert ’estimation conjointe des parameétres stochastiques de
Heston et la construction de la surface de levier locale, ce qui conduit a un processus
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d’optimisation complexe et coliteux. Ce caractere intensif se retrouve dans les temps
de calcul. Le Rough Heston repose quant a lui sur la résolution d’équations de Riccati
fractionnaires. Malgré 'existence d’une formule semi—fermée pour les calls, les calculs
restent sensibles aux valeurs initiales et tout aussi exigeants, avec des temps d’exécution
encore plus longs ( 30 heures dans les mémes conditions).

Sur le volet simulation, la différence principale réside dans le cotit par trajectoire. Le
LSV bénéficie d'une dynamique simulable par des schémas relativement simples (type
Euler), tandis que le Rough Heston nécessite un lifting markovien pour approximer le
kernel fractionnaire, ce qui augmente significativement le nombre d’opérations par path.
Cette surcharge se retrouve dans la vitesse de convergence : le LSV atteint une précision
satisfaisante avec environ 5 050 trajectoires, alors que le Rough Heston en requiert environ
6 250, confirmant que la structure de volatilité rugueuse accroit le bruit de Monte Carlo

et rallonge le temps nécessaire pour stabiliser les estimateurs.

TABLE 4 — Comparaison entre LSV et Rough Heston

Aspect LSV (Local Stochastic Volati- Rough Heston
lity)
Qualité du fit RMSE = 2.86 RMSE = 2.93
(Calibration) Ajustement plus précis pour les ma- Ajustement comparable ; colle mieux
turités long termes pour les maturités courtes
Complexité Calibration = probléme mathéma- Calibration fondée sur la résolution
théorique du tique et numérique complexe. des équations de Riccati fraction-
calibrage Estimation conjointe des parametres naires.

de Heston + construction de la sur-
face de levier.

Requiert des itérations de Monte
Carlo imbriquées = tres cofiteuses.

Présente une formule semi fermée
pour le prix des calls.

Calculs lourds et sensibles aux va-
leurs initiales.

Temps de calculs

23h (sur 2738 cotations; CPU)

30h (mémes conditions)

Simulation Chaque trajectoire est relativement Simulation plus lourde (approxima-

Complexité simple (schéma d’Euler) tion du kernel par lifting = plus
d’opérations par trajectoire)

Simulation Convergence avec =~ 5050 paths Convergence avec =~ 6250 paths

Convergence
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Athena price vs barrier — 3.0y, 4 obs/yr, coupon 12% Price difference vs barrier — Rough Heston minus LSV

1144 —® LSV —&— Price diff (Rough — LSV) m--A 09
—=— Rough Heston 0.010 { ==~ _child2 '/ S

Lsv 95% CI Y —m- %diff vs LSV - ' 08
113 Rough 95% CI 95% ClI

0.008
112

0.006

Price (per notional)

0.004

Price difference (per notional)

109

0.002

oooof--H-ooi i\ i i i i i i i i i i i i i i i i i i i R )

085 0.90 095 1.00 105 110 115 085 0.90 095 1.00 105 110 115
Barrier ratio (x S0) Barrier ratio (x S0)

(a) Athena : prix en fonction de la barriere (b) Différence de prix (Rough — LSV) et écart-%
(LSV vs Rough Heston, IC 95%). vs LSV, avec IC 95 %.

FIGURE 17 — Prix et écart de prix selon le niveau de barriere (3ans, 4 obs/an, coupon

12 %).

La figure 17b nous montre que le prix augmente de fagon monotone et convexe avec
la barriere pour les deux modele. En effet, un seuil plus haut retarde 'autocall et accroit
le coupon cumulé (coupon inconditionnel). Le rHeston est au-dessus de LSV sur toute la
plage.

Une explication plausible est que sous Rough, la volatilité reste élevée plus longtemps
apres un drawdown (mémoire « rugueuse ») et la corrélation négative spot—vol renforce
la skew & court terme. Cela réduit la probabilité de franchir t6t la barridre. A linverse,
LSV réverse plus vite vers un régime plus calme, ce qui facilite les rattrapages rapides et
donne une probabilité d’autocall plus élevée.

Probabilité de rappel cumuleé vs échéance — Barrier 0.95 Mat_3.0Y

—8— LSV
0.900 1 _m— Rough Heston
-
0.875 1
0.850 A
0.825 1

0.800 1 /f

0.775 /
0.750 7 Xf

Probabilité Cumulée Autocall

1.0 15 2.0 2.5 3.0
Temps (années)

FIGURE 18 — Probabilité d’autocall cumulative (CDF) par date d’observation — LSV vs
Rough.

La CDF LSV est au-dessus de Rough au début : LSV accumule plus vite les autocalls.
En miroir, la survie 1 — CDF est plus élevée sous Rough, ce qui implique une espérance
de temps d’appel plus grande et un prix plus élevé.
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Temps de Sortie vs Maturité — Barrier 0.95 Temps de Sortie vs Barriere — Mat_3.0Y
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(a) Maturité (barriere = 95%). (b) Barriére (maturité = 3 ans).

FIGURE 19 — Temps de sortie moyen : modeles LSV vs Rough Heston.

5 Conclusion

Dans ce papier, nous avons examiné en détail quatre classes de modeles : 1) la volatilité
locale selon Dupire, 2) le modele de Heston, 3) le modele LSV (qui conbine les deux
modeles précédents) ainsi que le modele 4) rough Heston afin de mesurer I'apport des
modeles de volatilité rugueuse par rapport aux approches plus classiques de volatilité
stochastique locale. Les modeles ont été calibrés sur des données réelles du S&P 500, ce
qui permet d’évaluer leur capacité a reproduire fidelement le smile implicite observé sur
le marché et a valoriser avec précision des produits autocallables.

L’apport central réside dans la calibration opérationnelle du modele rough Heston.
Avec un exposant de Hurst calibré a H = 0,2561, cohérent avec la littérature, le modele
améliore 1'ajustement wvanille tout en conservant une structure semi-analytique exploi-
table. Techniquement, la résolution des équations de Riccati fractionnaires par schémas
d’Adams—Bashforth—-Moulton, couplée a une inversion FFT maitrisée, transforme progres-
sivement la volatilité rugueuse d’un concept académique en un outil exploitable.

Les résultats confirment une lecture désormais bien établie : chaque classe de modele
posséde un domaine de validité. Les cadres classiques (LV, SV, LSV) demeurent des ré-
férences robustes et bien comprises pour la majorité des usages. Les modeles rugueux
apportent une sophistication utile lorsque la structure fine de la volatilité importe (matu-
rités courtes, cohérence inter-dates du smile) et peuvent, dans le contexte des autocalls,
affiner la valorisation et la gestion des risques entre dates de constatation.

L’analyse comparative reste incomplete. La calibration conduite sur un seul sous-jacent
(S&P 500) restreint la portée externe des conclusions. De plus, la viabilité opérationnelle
exige une maitrise consolidée des contraintes numériques (FFT, régression conditionnelle,
tolérances) et des cofits de calcul, méme si des progres encourageants ont été observés.

Malgré certaines limites, I'adoption industrielle des modeles rough progresse, bien
que de manieére prudente. Les difficultés liées aux calculs et a la validation tendent a
s’atténuer grace aux avancées récentes : schémas hybrides, liftings markoviens, calibration
assistée par des algorithmes sophistiqués. Ces progres rendent envisageable le passage
des modeles rough de la théorie a la pratique, surtout lorsque leur réalisme apporte un
bénéfice tangible.
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Appendix

1 Théoreme de Gyongy

Soit Y; un processus d’It6 en dimension finie,

dY; = B(t,w)dt + 6(t,w) dW,,

ol 3 et & sont adaptés et bornés et ott 6(¢,w)d(t,w)" est uniformément définie positive.

Alors il existe un processus markovien Z; admettant une solution faible,

dZt == b(t, Zt) dt + d(t, Zt) th,

tel que Z; et Y; aient la méme loi marginale pour tout ¢ > 0, avec

b(t,z) = E[B(t,w)|Y, = 2], d(t,z)d(t,z)" =

2 Extrait des données utilisées

TABLE 5 — Extrait de la chaine d’options filtrée (12 premieres lignes)

E|o(t,w)o(t,w) | Yy =2z].

expiration strike last_price bid ask
2025-09-19  1400.0 0.125 0.05 0.20
2025-09-19 1600.0 0.175 0.10 0.25
2025-09-19 1800.0 0.275 0.25 0.30
2025-09-19  2000.0 0.300 0.25 0.35
2025-09-19  2200.0 0.450 0.40 0.50
2025-09-19  2300.0 0.550 0.50 0.60
2025-09-19 2400.0 0.650 0.60 0.70
2025-09-19  2500.0 0.775 0.70 0.85
2025-09-19  2600.0 0.875 0.80 0.95
2025-09-19 2700.0 1.025 0.95 1.10
2025-09-19  2800.0 1.150 1.10 1.20
2025-09-19  2900.0 1.325 1.25 1.40

3 Reproductibilité

Matériel et systeme

TABLE 6 — Configuration matérielle et systeme

Processeur Intel Core i7-12650H (12 Gen, 2,30 GHz)

Mémoire RAM 16 Go (15,6 Go utilisables)
Systeme Windows 64 bits, architecture x64
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Environnement Python

TABLE 7 — Versions des bibliotheques Python

Librairie Version

Python 3.12.4
NumPy 2.2.6
SciPy 1.16.0
Pandas 2.3.0
Matplotlib 3.10.3
QuantLib  1.38
py_vollib 1.0.1
yfinance 0.2.63

4 Exemple de notice d’ABRC (BCV)

Source : Notice de cotation Barrier Reverse Convertible Autocallable, BCV, 22 janvier

2018. ISIN CHO0398782687.



LISTING NOTICE

ble

Underlyings: Novartis - Roche - Givaudan
Coupon: 5,30% p.a. - Autocall 100,00%
Barrier Cont. 65,00% - Maturity: 27 January 2020

This structured product is not a collective investment within the meaning of the Swiss
Federal Investment Fund Act. It does not require approval from the Swiss Financial Market
Supervisory Authority (FINMA) and is not subject to FINMA supervision. Investors are also
exposed to the risk of insolvency of the issuer.

1. PRODUCT DESCRIPTION

Issue details

Sec. No. / ISIN / Symbol
Issuer

Lead manager / Calculation
agent / Paying agent

Prudential supervision

Nominal amount
Issue size
Minimum investment
Issue price
Base currency
Distribution fees
Initial fixing date
Payment date
Final fixing date
Payout date
Definition

SVSP-Classification

www.bcv.ch/invest
021 212 42 00

39 878 268 / ISIN CH0398782687 / 0217BC
Banque Cantonale Vaudoise, Lausanne Switzerland (S&P AA/stable)
Banque Cantonale Vaudoise, Lausanne

BCV Lausanne, Switzerland, is subject to prudential supervision by Swiss Financial Market
Supervisory Authority (FINMA).

CHF 5 000

200 Barrier Reverse Convertible Autocallable (includes an increase and reopening clause)
CHF 5 000

100,00%

CHF

No distribution fees

19 January 2018 (closing price of the underlying share(s) on the reference stock exchange)
26 January 2018

20 January 2020 (closing price of the underlying share(s) on the reference stock exchange)
27 January 2020

The Autocallable Barrier Reverse Convertible is a structured product. It pays a guaranteed
coupon throughout the product’s lifetime (up to maturity or early redemption). This particular
product will be redeemed before maturity under certain conditions. For early redemption to occur,
each of the product’s underlying assets must be above its Autocall Level.

Yield enhancement — Barrier Reverse Convertible (1230), according to the Swiss Derivative Map
available at www.svsp-verband.ch

BCV




— :
Underlying
; Reference Initial Fixing
i Name ISIN Code Exchange (Si,0)
1 Novartis AG CH0012005267 SIX Swiss Ex 83,38
2 Roche Holding AG CH0012032048 SIX Swiss Ex 234,50
3 Givaudan SA CH0010645932 SIX Swiss Ex 2 295,00
i Barrier Ratio Early redemption level
1 54,197 59,96642 83,38
2 152,425 21,32196 234,50
3 1491,750 2,17865 2 295,00

Product terms and conditions

Changes that are
unplanned or not agreed

Strike level (K)
Barrier (B)
Type of Barrier

Early redemption level
(autocall)

Worst-performing
underlying asset

Coupon

Coupon-Frequency

Coupon payment dates

Coupon calculation method
Early redemption

Early redemption
observation dates

Early redemption dates

Information about any changes that are unplanned or not agreed contractually (e.g.,capital
transactions that affect the underlying assets such as splits, par-value reimbursements or
conversions) shall be provided at www.bcv.ch/invest.

To receive email alerts about these changes, you can sign up on the website and add this
product to your favorites.

100,00% of the initial fixing
65,00% of the initial fixing

American (the price of each underlying asset on the reference stock exchange is observed
continuously)

100,00% of the initial fixing

The worst-performing underlying asset is determined according to the following formula:
Min; (g) where

Sio is the initial fixing for underlying i

Sitis the closing price of underlying i on the observation date
5,30% p.a.

The coupons will be paid in two tranches :

0,00% p.a. in interest

5,30% p.a. capital gain resulting from the option premium.
Half-yearly (2,65% per Period)

Coupons payments will occur on the following dates :

26 July 2018 - 28 January 2019 - 26 July 2019 - 27 January 2020
30/360, Modified following, unadjusted

If the worst-performing underlying asset is above its early redemption level on the observation
date, the product expires immediately and the nominal amount is redeemed at 100%.

19 July 2018 - 21 January 2019 - 19 July 2019 - 20 January 2020

26 July 2018 - 28 January 2019 - 26 July 2019 - 27 January 2020

€ BCV
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