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Abstract

Analyzing the effect of business cycle on rating transitions has been a subject of great
interest these last fifteen years, particularly due to the increasing pressure coming from reg-
ulators for stress testing. In this paper, we consider that the dynamics of rating migrations
is governed by an unobserved latent variable. Under a point process filtering framework, we
explain how the current state of the hidden factor can be efficiently inferred from observations
of rating histories. We then adapt the classical Baum-Welsh EM algorithm to our setting and
show how to estimate the latent factor driving parameters. We demonstrate the efficiency of
our approach on a credit rating database. Once calibrated, the filtering formula can be used
in real-time to detect economic changes affecting the dynamics of rating migration.
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1 Introduction

Credit risk is the risk of loss associated with a borrower’s default relative to the repayment of its
debt. It may be related to the nominal or interest payments, to the uncertainty on the recovery
rate in case of default but also to the deterioration of the credit quality. Credit risk research
has been considerably intensified in the last 20 years. In particular, the challenges raised by the
previous financial crisis prompted researchers to develop credit risk valuation models that cap-
ture evolution of the business cycle. The evolution of the banking supervisory regulation and
accounting rules follows this trend (see official articles on IFRS9 as [1] and EBA guidelines on
LDG downturn [10], PD and LGD [8], and stress testing [9]).
A credit rating evaluates the confidence in the capacity of the borrower to comply with credit’s
terms. Under the RWA capital rule, Basel regulations (see [2]), the amount of capital required for
a credit depends on its rating. These ratings may be provided by rating agencies (like Moody’s,
Standard and Poor’s, Fitch Ratings...) or may be the outcome of internal rating systems. An
entity’s rating may evolve through time according to its health and the economic cycle. There-
fore predicting the evolution of rating migration is of primary importance for for every financial
institution. The migrations of a group of credit entities can be described by migration matrices,
defining the probabilities to move from one rating state to another in a given period of time.
Transition matrices are required for the computation of important risk indicators such as Condi-
tional Value-at-Risk (CVaR) or Incremental Risk Charge (IRC) on credit portfolios and can also
be used for the pricing of some credit derivatives. Given recent evolution in banking supervisory
and accounting rules, the challenge is to explain changes in transition probabilities due to change
in the business cycle. For example, business-cycle dependent transition matrices - also known as
Point in Time PIT matrices - may be used to achieve credit stress tests. In fact, the mechanism
that binds transition probabilities to some macro-economic factors may serve to propagate stress
test scenarios on credit portfolios.

Factor-based migration models provide a nice modeling framework for capturing migration
sensitivities to macro-economic changes. In [7], different modelling and estimation approaches
have been considered and estimation performance have been compared on real data. Factor mi-
gration models allow transition probabilities to depend on dynamic factors. Two types of models
are considered: the “ordered Probit” (or structural approach) as described, e.g., in [13] and the
“multi-state latent factor intensity model” (or intensity approach) studied, e.g., in [15]. In the
latter factor intensity approach, the migration dynamics of each credit entity is described by a
stochastic intensity matrix (or generator) whose components depend on a pool of common factors.
The underlying factors aim at representing the evolution of the business cycle. The estimation
procedure of such models differs given that the factors are considered to be observable or un-
observable. In the first approach, explanatory observable factors (macroeconomic variables for
example) have to be selected first. Then, sensitivities of transition intensities with respect to the
selected factors can be estimated by a Cox regression, although the choice of explanatory variables
may be arbitrary resulting in an important loss of information.

This article focuses on factor intensity models with unobservable driving factors. In this set-
ting, the hidden factor may be inferred by maximizing the unconditional likelihood. The latter
being very heavy to compute (see for example, [15]), an approach which consists of representing
the dynamics of the transition probabilities in the form of a state-space linear Gaussian model has
been developed in [7]. The non-observed factor is then filtered by the Kalman recursive algorithm.
The model parameters are then estimated by maximizing the unconditional likelihood. However,
the construction of the linear Gaussian model heavily relies on estimated quantities (transition
intensities) which are reliable only when asymptotic normality applies. But this assumption does
not hold in many applications where the sample size is too small. [12] use a point process filtering
approaches for estimation of latent factor given default observation in a credit risk portfolio.

In this paper, we assume that the unobserved driving factor is given as finite state Markov
chain. The method, presented here, consists in filtering the underlying driving factor through the
observations of a multivariate point process counting migration events in the pool of entities. We
explain how to adapt the classical univariate point process filtering formula ([5]) to observations
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given as sample path of multivariate (migration) counting processes. An EM algorithm is then
used to estimate the hidden factor parameters in this setting. This methodology is illustrated on
a data set of financial instruments ratings covering the period June 15, 2012 to December 14, 2016
and considering a two-state hidden factor. We observe that the dynamics of rating transition is
switching among a steady migration regime and a volatile migration regime and that the steady
state is clearly the more persistent one.

The paper is organised as follows. Section 2 presents the point process filtering method and
application to credit migration processes.
Section 3 describes the Baum-Welsh algorithm adapted to the model in order to estimate the
parameters at stake.
Finally the data, results of the crises detection framework are detailed along a fourth and last
part.

2 Filtering of credit migration process

For a bond portfolio, the dynamics of rating migrations can be mathematically represented as a
multidimensional counting process, each component representing the cumulative number of tran-
sitions from one rating category to another. Assuming that the counting process admits a latent
intensity determined by the hidden factor’s state, is it possible to estimate this intensity by only
using observations of the point process ?

2.1 Filtering of counting process

We consider a probability space with a filtration: (Ω,F ,F = (Ft)t∈[0,T ],P). All the stochastic
processes are supposed to be adapted to F and integrable on [0, T ]. The problem is to estimate the
states of an unobserved process Θt using only the information FNt resulting from the observation
of a counting process N . By using the least squares criterion, this leads to determining

Θ̂t = E[Θt|FNt ] .

With the same notations, all the processes O filtered by FNt are written :

Ôt = E[Ot|FNt ].

Unfortunately, the explicit computation of Θ̂ (by the Bayes formula) is only possible in very simple
cases, for example, when N is a mixture of Poisson processes. Moreover, numerical approaches
can be carried out but they are extremely heavy to implement as soon as non-trivial models are
considered.

The filtering approach is different. It deals with Θ̂ as the solution of a forward EDS (differential
stochastic equation) that allows, given Θ̂t to compute Θ̂t+dt per a simple recursive update. The
main result on point process filtering can be stated in the following way (see [5], [14], [17], [23]).
Let Θ be a process of the form

dΘt = at dt+ dMt ,

where M is a martingale with no jumps in common with N . Then, the Θ̂ process satisfies the
following equation:

dΘ̂t = ât dt+ ηt (dNt − ν̂t dt) , (1)

with

ηt =
(̂Θ ν)t−
ν̂t−

− Θ̂t− , (2)

and where ν is the F -intensity of N . The dynamic (1) suggests a recursive algorithm to update
the Θ̂ process.

4



A consequence of (1) is that the dynamics of Θ̂ implies (̂Θν) whose dynamic implies the term
(̂Θν2), and so on ... Therefore this filtering formula induces an infinite nesting problem.

In order to study the dynamics of defaults in a credit portfolio or the dynamics of rating
migrations, this filtering formula must be extended to a multivariate case.

2.2 Extension to rating migration process

In this section, we show that the previous filtering formula admits a natural multivariate extension
and we solve the infinite nesting problem by considering a finite states latent factor. The details
of this part are presented in article [6].

2.2.1 Filtering multivariate point process

In order to study the dynamics of defaults more generally the dynamics of rating migrations in a
credit portfolio, the classical filtering formula also studied in [5] and [17], must first be generalized
to a multivariate setting.

Let N j = (N j
t )t∈[0,T ], j = 1, . . . , p, be a set of simple counting processes:

N j
t =

∑
0<s≤t ∆N j

s <∞ and ∆N j
s ∈ {0, 1}.

It is assumed that these processes admit a F - intensity νj = (νjt )t∈[0,T ], j = 1, . . . , p, and that
they do not have any common jumps, i.e., ∆N j

t ∆Nk
t = δjk (1 if j = k and 0 otherwise).

In the following, we deal with the multivariate counting process N = (N1, . . . , Np) and we write
ν = (ν1, . . . , νp) its intensity from filtration F .

Proposition Let Θ be a square integrable process of the form

Θt =
∫ t

0
as ds+Mt , (3)

where a is a F -adapted process and M is a F -square integrable martingale with no jumps in
common with N . Therefore the process Θ̂ is solution of the EDS

dΘ̂t = ât dt+
∑
j

ηjt (dN j
t − ν̂

j
t dt) , (4)

with

ηjt =
(̂Θ νj)t−
ν̂jt−

− Θ̂t− , (5)

with initial conditions
Θ̂0 = E[Θ0] . (6)

Proof: see [6]

2.2.2 Latent factor with finite number of states

To solve the issue of infinite imbrication mentioned above, we assume that the intensity ν =
(νj)j=1..p is governed by a finite state Markov chain. Consequently the hidden factor driving
process Θ is assumed to be a Markov chain with finite number of states in T = {1, . . . ,m} and
with constant transition intensities khi, i 6= h, such that khh = −

∑
i;i6=h k

hi and

∀ i 6= h ∈ [1...m] : P(Θt+dt = h |Θt = i) = kih dt+ o(dt). (7)

The initial distribution of Θ is defined:

∀i ∈ [1...m] : Πi = P(Θ0 = i). (8)
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Let us introduce the processes Ih, h ∈ T , defined by

Iht = 1[Θt=h], h ∈ T (9)

The process Θ can be represented as a finite sum of indicator processes

Θt =
∑
h∈T

h Iht . (10)

2.2.3 Application to rating migration processes

The filtering theory with a counting process has been applied to credit risk for example in [11]
and [17].
In order to remain realistic and fix the terminology, a bond market containing a finite number
of individual bonds should be considered. All bonds are affected by variable and random market
conditions represented by a hidden Θ Markov chain. A bond q of the sample is observed between
the dates sq and uq, 0 ≤ sq ≤ uq ≤ T . At all times, the bond can only be in a state belonging to
a finite set of states, J = {1, . . . , n}.
This space represents different credit risk scores in descending order, n being the default state.
For example, Standard and Poor’s long-term investment ratings can be translated to AAA = 1,
AA = 2, A = 3, BBB =4, ..., D (Default) = 10.
Let Zqt ∈ J be the state of the bond at time t and Zq = (Zqt )t∈[sq,uq ] the migration process that
describes its evolution. The indicator process and the point process associated to Zq are

Jq,jt = 1[Zq
t =j], Nq,jk

t = ]{s ∈ [0, t];Zqs− = j, Zqs = k}. (11)

(Zq)q are assumed to be identically distributed. Then the processes (Zq)q are governed as de-
scribed before by their common intensity:

P[Zqt+dt = k |Θt = h, Zqt = j] = `h,jk dt+ o(dt). (12)

We can illustrate the situation by the following figure. It shows the transitions between two states
of Θ.

Figure 1 Θ’s transitions

The processes of each individual Zq are assumed to be conditionally independent, knowing
FΘ
T . However unconditionally, they are dependent through the effect of the factor Θ. Indeed the

change of state of a bond will induce the change of state of other bond. The censorship mechanism
governing (sq, uq) is assumed to be non-informative and can therefore be considered deterministic
and belonging to FN0 .

To infer the underlying process Θ, It is sufficient to observe the aggregated counting process
N jk defined by

N jk
t =

∑
q

Nq,jk
t , (13)

governed by the F intensities
νjkt = Y jt

∑
h

`h,jk Iht− , (14)
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with
Y jt =

∑
q; sq≤t<uq

Jq,jt . (15)

The exposure process Y j is left continuous. It increases by 1 when ∃ k 6= j: Nkj has jumped,
or when a new bonds entered the pool with j. It decreases by 1 when a bound jumps outside
equivalently ∃ k 6= j: N jk = 1, or when a bond expires with the note j.
Recall that I lt− is the indicator function of the unobserved factor that is equal to 1 in state l.
As Yj is FN adapted and using the innovation theorem as in [6], the FN intensity of N may be
written:

ν̂jkt = Y jt
∑
h

`h,jk Îht− , (16)

With such assumptions, we obtain the following form of the filter formula applied to the indicator
of the unobserved process:

dÎht =
m∑
i=1

kihÎit−dt+ Îht−
∑
j 6=k

( lh,jk∑
r l
r,jk Îrt−

− 1)(dN jk
t − Y

j
t

m∑
i=1

li,jk Îit−dt) (17)

In this formula, some parameters are unknown: the initial distribution (Πi)i, the transition in-
tensities of Θ, (kij)i,j and the conditional transition intensities of the observable rating process
(lh,ij)h,i,j .
In order to make this formula usable, it is necessary to estimate these parameters. The major
study of this note consists on seeking a way to make a such estimation.

2.3 Relation to Kalman filter

We try in this section to find similarities with the classical Kalman filter.

The set up of the Kalman filter can be defined in two phases. A first equation, of prediction,
provides the filtered estimation of the hidden state knowing the observations of the previous
times. A second one, that of correction which makes possible to correct the error made during
the prediction phase, calculates the image of the hidden state knowing the observations of the
previous and current time (the observation at the present time ”corrects” the estimation of the
previous step). The reader can refer to the studies made on the classical Kalman filter applied to
probability laws in [19].
Thanks to the linearity of the equations and the Gaussian form of the handled processes, the
Kalman filter compute recursively the like-hood of the model (conditioning a gaussian process by
a gaussian is still normally distributed). Maximizing the like-hood could give the desired estima-
tion of the parameters.
With the notations of the model, It the hidden process filtered and Nt the observation at time t,
the Kalman filter would be as follows:

Equation of prediction
E[It|FNt−] = g(E[It−|FNt−])

Equation of correction
E[It|FNt ] = f(E[It|FNt−], Nt)

Despite the no-linearity of the equations and forms processes without Gaussian assumptions, it is
possible to see in the filter formula, (17), a similar decomposition:

E[Iht |FNt−] = Îht− +
∑
i

kihÎit−dt (18a)

E[Iht |FNt ] = E[Iht |FNt−]︸ ︷︷ ︸
prediction

+Îht−
∑
j 6=k

( lh,jk∑
r l
r,jk Îrt−

− 1) (dN jk
t − Y

j
t

∑
i

li,jk Îit−dt)︸ ︷︷ ︸
new Information

(18b)
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We can identify Y jt
∑
i l
i,jk Îit−dt as the information predicted from the previous step and dN jk

t −
Y jt

∑
i l
i,jk Îit−dt as the new information observed and brought by a jump at t. It would there-

fore be possible to estimate the parameters using extended Kalman filter. Derivations of such
extensions can be found in [20]. However this solution turns out to be very heavy.

3 Adjusting EM algorithm to our setting

In this section, we propose an adaptation of the classical HMM Baum-Welsh algorithm in order
to use the parameters estimations in the filtering formula (17).

If we consider the problem with a scale of discreet time, we must furnish new notations. For
a space time Φ = (0, ..., t− 1, t, t+ 1, ...T ), we define the transition probabilities of Θ:

∀(i, j) ∈ [1...m]2, ∀t ∈ Φ, t ≤ T − 1 : Kij = P (Θt+1 = j|Θt = i).

We also define the conditional transition probabilities of (Zq)q:

∀(i, j) ∈ [1...n]2, ∀h ∈ [1...m] ,∀t ∈ Φ, t ≤ T − 1 : Lh,ij = P (Zqt+1 = j|Zqt = i,Θt = h).

We call ∀ t ∈ Φ : Zt = (Z1
t , ..., Z

d
t ) the total sample at time t.

We call Zta|tb = (Zta , ..., Ztb) the sample of processes describing the evolution of the bonds ratings
on Φ between the times ta and tb.
We write Z \ Zr = (Z0...Zr−1, Zr+1...ZT ), the vector without the rth component.

The processes (Z1, ..., Zd) are not independent. Indeed, only one trajectory’s realisation of Θ,
the hidden factor, governs the sample’s elements one.
The proposed method is a maximisation expectation (EM) algorithm for hidden Markov chains
(HMM), adapted to the framework. We can find studies on the classical model in [22], [3], [24]
and [21].
However the classical algorithm is not totally adapted to the framework linked to the filter formula
(17) that we want apply. We highlight the following problematical classical model’s characteristics:

• Baum-Welsh algorithm is an estimation in discrete time (the idea of duration is not consid-
ered).

• Rating status depends only on the state of the hidden factor. In the considered case, it also
depends on the previous rating.

• Elements of the observations sample (the different ratings of the different bonds) are inde-
pendent whereas they are dependent throw the same effect of Θ in our framework.

The first step of the classical algorithm assigns initial values to the parameters we want to esti-
mate. Then the algorithm replaces the missing data (the states of Θ) with Bayesian estimators
using the observations and the current parameters values.
The second one consists on improving a conditional likelihood that leads to obtain better estimates
of the parameters. Then these new estimates will be used to repeat the first step along the next
iteration.
At each step, the value of the parameters increases a like-hood and converges up to a local equi-
librium which describes as well as possible the data.

3.1 Hypothesis

In hidden Markov chain models, an unobservable chain governs another observable one.
We recall the fundamental assumption of a Markov chain: the transition from one state to another
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depends only on the current state (no memory):

∀ t ≥ 1 : P (Zt|Z0, ...Zt−1) = P (Zt|Zt−1). (19)

We recall the classical HMM’s strong hypotheses mentioned before:

∀ t ≥ 1 : P (Zt|Z0, .., Zt−1,Θ0, ...,Θt) = P (Zt|Θt). (20)

Formally, the future observation depends only on the state in which the unobserved process is.
The hidden factor brings all the observable factor’s information.
In the reality, there should be a response time between a jump of Θ and the effects on the rating
process Z. A jump of Θ at time t can not directly affect the rating process Z at time t. That’s why,
we change the conventions here by supposing that rating process law is governed by the hidden
factor Θ at the previous time.
We rather have:

∀ t ≥ 1 : P (Zt|Z0, .., Zt−1,Θ0, ...,Θt−1) = P (Zt|Θt−1). (21)

Along the definition of a self financing portfolio, one can find the same kind of considerations.
Indeed the process strategy is assumed to be Ft predictable (see [4].
It is also not acceptable to suppose that the new rating only depends on the economic cycle
(state of Θ). It should also depends on the previous rating. Therefore we mix the two previous
hypotheses by assuming that:

∀ t ≥ 1 : P (Zt|Z0, ..., Zt−1,Θ0, ...,Θt−1) = P (Zt|Zt−1,Θt−1). (22)

An other equality emerges from the previous assumptions:

∀ t ≥ 1 : P (Θt|Z0, ..., Zt,Θ0, ...,Θt−1) = P (Θt|Θt−1). (23)

Moreover, to be consistent with the classical HMM algorithm, the observations must emerge
from independent realizations of Θ.
Since the observations come from one and an unique realization of Θ (we cannot have different
and independent realizations of the cycle economy), we keep the dependence through the sample
along the computations.
To tackle the difference of time dimension, the discreet time parameters are estimated in order
to use them in the filtering formula, (17), which describes a continuous phenomenon. One time
step of subdivision and an other of extrapolation will be necessary. This manipulation seems to
be quite reasonable but may not provide a completely trustful description of the model.

3.2 The computations of the estimators

This part only presents the main results of the algorithm. Evidences and estimators derivations
are not furnished here. We define the probability forward:

αt(j) = P (Z0|t = z0|t,Θt−1 = j) (24)

and the probability backward:

βt(j) = P (Zt+1|T = zt+1|T |Zt = zt,Θt−1 = j). (25)

We find the following recursive formula in order to compute the two probabilities:

αt(j) =
m∑
k=1

αt−1(k)Kkj
∏
d

Lj,z
d
t−1z

d
t , (26)

βt(j) =
m∑
l=1

βt+1(l)Kjl
∏
d

Ll,z
d
t z

d
t+1 . (27)
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We define the two random variables useful to describe Θ:

ut(j) = 1(Θt=j) = Ijt , (28)

vt(k, j) = 1(Θt=j,Θt−1=k). (29)
The forward and backward probabilities help to compute the following Bayesian estimators:

ût(j) = P (Θt = j|Z0|T = z0|T ) = βt+1(j)αt+1(j)
LT

, (30)

with
LT = P (Z0|T = z0|T ) =

∑
j

αT (j), (31)

that is the likelihood of the whole sample.

and:

v̂t(k, j) = P (Θt = j,Θt−1 = k|Z0|T = z0|T ) = βt+1(j)Kkjαt(k)
∏
d L

j,zd
t z

d
t+1

LT
. (32)

3.3 Estimation of the parameters

The maximization phase consists on finding better parameters than those of the previous iteration.
We call M̃ = (Π(ρ+1), L(ρ+1),K(ρ+1)), the new parameters at iteration ρ that we want to estimate
and M = (Π(ρ), L(ρ),K(ρ)), the old ones from the iteration ρ.
We define:

wi = P (Z,Θ = θi|M), (33)

ri = P (Z,Θ = θi|M̃). (34)

By maximizing ln P (Z|M̃)
P (Z|M) , we obtain better estimations of the parameters than in M.

By this way, we try to have a higher likelihood with the new parameters:

P (Z|M̃) ≥ P (Z|M). (35)

To maximize this last is equivalent to maximize

Q(M,M̃) =
m∑
i=1

P (Θ = i, Z|M) ln(P (Θ = i, Z|M̃). (36)

We obtain then the following new estimations:

Πi = P (Θ0 = i|Z,M) = û0(i), (37)

Li,kr =
∑
d

∑
t ût(i)1(zd

t =r,zd
t−1=k)∑

d

∑
t ût(i)1(zd

t−1=k)
, (38)

Kji =
∑
t v̂t(j, i)∑
t ût−1(j) . (39)
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4 Implementation and results

In this section, the different steps and choices for the algorithm’s implementation are presented.

4.1 Description of the data

The data chosen in this report come from OpenDataSoft. We choose the base ”Credit Rating
Agency Ratings History Data” and more precisely the ratings given by Moody’s Investor’s services.

Figure 2 Ratings used

It remains difficult to know whether it is better to have a homogeneous sample or not (to
compare the ratings of really different instruments might make no sense).
Therefore we choose the data which concerns the financial instruments and we limit the sample
at 30000 ratings reportings for a sake of rapidity. For instance, we can find euro medium term
notes from JPMorgan Chase and Co., japan bonds from Mizuho Bank...
The main attributes of a data value are the following:

• Issuer name

• Rating

• Maturity Date

• Rating action date

The study covers the period June 15, 2012 to December 14, 2016 with a daily granularity on a
portfolio of 1769 bonds at the initial moment. At the initial date, the ratings proportions are
described as on 3 :

Figure 3 Ratings proportions
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We count 2570 jumps during the considered period.

Figure 4 Evolution of number of jumps

4.2 Algorithm’s steps

Figure 5 Steps

The framework is composed of three steps.
The first one consists on choosing initial values for the intensities (kij)i,j and (lh)h and the initial
distribution Π.
Then the intensities are used to compute transition probabilities for a duration of 1 day.
To obtain transition probabilities, on a duration t, from an intensities matrix Λ = (λij)i,j , the
exponential matrix is used:

P (t) = exp(Λt) (40)

By this way, we obtain the transition probabilities K and (Lh)h.
If the initial values of (lh)h have been chosen equal for all h ∈ [0..m], that induces that Θ has no
effect on the migrations. Therefore after the transformation in discreet time, we add a perturba-
tion to the probabilities (Lh)h to differentiate the conditioning by Θ.
With these initial parameters values, the recursive Baum-Welsh algorithm sends us back his pa-
rameters estimations.
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Along a last step, in order to compute Ît, we estimate the final intensities values (lh)h and (kij)i,j
from the Baum-Welsh’s outputs to be used in the filtering formula.

4.2.1 Initial conditions and Perturbations

As described in the previous part, we have to furnish initial value of parameters to estimate along
the Baum-Welsh step.
The first idea consists on running the Baum-Welsh algorithm with initial uniform distributions for
Π and K, respectively, the initial distribution of the hidden factor and its transitions probabilities
matrix.

(a) initial value of Π (b) initial value of K

Figure 6 Initial Θ’s parameters

It is more difficult to find consistent values for the initial values of (Lh)h, the conditional
transition probabilities matrices. Indeed, the choice of uniform probabilities does not fit with the
form expected.
Furthermore it is impossible to simulate the conditioning by Θ since this last is unobservable. The
first idea proposed is to consider that Θ has no effect on the transitions. By this way, we attribute
the same value to transition intensities matrices for all the states of Θ. The conditioning by Θ is
ignored and an estimators only based on the data, is used.
The classical intensity estimator of a Markov chain intensity used is:

∀i 6= j,∀h : λ̂ij = Nij(T )∫ T
0 Yi(s)ds

. (41)

(see the studies in [16] and [7]).

With Nij(T ) the number of jumps from i to j over the duration of the sampling and Yi(s) the
number of individuals in state i at date s. Computing the denominator is similar than calculating
the aggregate duration of all individuals spent in state i. Subsequently, we compute:

λ̂i =
∑
i6=j

λ̂ij .

By this way we consider from the beginning that Θ has no effect on the ratings.
Since we bring no information, without any perturbation, the Baum-Welsh algorithm is not able
to differentiate the states of Θ and assimilate them to the events. Why would it promote some
states compared to others if it has no profile, no way to differentiate them from the beginning ?
Therefore it sends back exactly the same parameters that we have provided to it. ÎΘ remains
constant at 0.5.

According to the previous result, it seems to be necessary to bring some information about the
states of the hidden parameter to help the algorithm to differentiate them.
Then we can add different perturbations ε to each matrices of transition to differentiate the con-
ditioning by the different states of Θ.

Along the framework, we choose a Θ with 2 states. With 2 states, it seems to be interesting
to choose one state which tends to influence the bonds to jump to a better rating, the favourable
state, and an other which tends to influence the bonds to jump to a worse rating, the unfavourable
state.
These two states would describe the health of the global economy. This profiles choice may indicate
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whether the economy in a favourable state which provides better confidence to credit or not.
For modeling that difference, we decide to add ε to the rating improvement transitions probabilities
and to subtract it to the rating degradation transitions for the good state, the state 1. The opposite
manipulation is done for 0, the unfavourable state for the credit.

Figure 7 Perturbation for the bad state

4.2.2 Discretization and implementation of the model

Two discretizations have been necessary for the implementation.
The first one concerns the Baum-Welsh algorithm. Indeed the Baum-Welsh algorithm’s inputs
are transition probabilities while the estimators λ̂ at (41) represent intensities.
The time interval’s length reaches almost 2 thousands days.
If the discretization is too fine, the algorithm may be very slow. If the interval of cutting in too
large, we might miss too much information. In deed, the algorithm can only consider one jump
of the same bond during a period. If several jumps occur during the same period, the algorithm
will miss this piece of information.
The second risk of multiple jumps being much more significant, a length of 1 day has been chosen.

Then a parameters transformation is crucial for the transition between the end of the Baum-
Welsh algorithm and the use of the filtering formula. The algorithm’s outputs being transition
probabilities, we have to compute an antecedent (which respects intensities format) of the expo-
nential matrix function in order to retrieve intensities to insert in the filtering formula (17).

Finally the filtering formula has do be discretized to be implemented (17).
In deed, this equation describes a continues phenomenon thus we have to choose a cutting as fine
as possible in discrete time. With an intuitive length of 1 day, the system diverges.
That might be explained by the fact that 1 days was still too large.
The time interval has to be very small to be consistent with the intensities.
In addition, the number of jumps ∆N , should not exceed 1 since it is assumed that there is not
simultaneous jumps. Although more than one identical jump may be observed during the same
day.
Furthermore data format does not allow to know the precise moment of a jump during a day.
To solve this issue, we decide to cut each days in 500 and then to attribute randomly the jumps
between those daily parts.
Those moves from continuous to discrete and from discrete to continuous time are not perfectly
suitable but remain acceptable.

The reader’s attention should be drawn to many other numerical issues encountered in this model
like the manipulation of tiny numbers. This issue is a direct consequence of the adaptation of the
model. Details are furnished in the appendices.
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4.3 The Experiment: stressed periods detection

With a perturbation of ε = 10−8, we can observe the following conditional transition matrices
after applying the EM algorithm.

Figure 8 1 day transition matrix L[Θ=0]

Figure 9 1 day transition matrix L[Θ=1]

We can no longer observe a good or a bad state for the credit anymore. Although we can notice
that the state 1 of Θ is more stable than 0 since the values on its diagonal are mainly higher than
in 0.
Moreover its probabilities of jumps (which improve or deteriorate the ratings) are mainly lower
than in 0.
The algorithm divides the information between the two states. 0 is the volatile state where a
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bond tends to have more chance to change its rating. 0 represents a state of stress for the credit
whereas 1 a state of stability.
It is interesting to remark that the probabilities to fall in the worst rate (C which is almost the
state of default) are not the same in the two states. We compute 2.27084414030e-05 for the state
0 and 4.86572724696e-06 for the state 1.
Indeed, even if a bond seems to have more chance to improve its rating in 0 it also has more
chance to fall in default. 0 remains the worst and the riskiest state.

To deeper understand the behaviours of the two states, it is more relevant to observe the tran-
sitions on 1 year: L1year[Θ = 0] = L[Θ = 0]365 and L1year[Θ = 1] = L[Θ = 1]365 (the time
transition for L was 1 day). 0 is clearly the volatile state (poor diagonal) and not desirable for
the market credit: ratings deterioration would be more often.

Figure 10 1 year transition matrix L1year[Θ = 0]

Figure 11 1 year transition matrix L1year[Θ = 1]
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We compute probabilities to fall in C: 0.00830969334655597 for 0 and 0.0017274814489362618
for 1 at 1 year. A bond is almost 8 times more likely to fall in the worst rate in 0 than in 1.

The following figures show the outputs of the Θ ’s parameters.

(a) Π (b) K

Figure 12 Θ’s parameters

By analyzing these values, we can predict that, Θ would be used to stays in 1, the normal and
favourable state for the credit with fast and regular jumps to 0, the riskier one.
Consequently the global economy would be used to be in a steady state but would know sometimes
short moments of stress for the credit.
the following plot shows the outputs of the filtering formula, ÎΘ, the hidden parameter filtered.

Figure 13 Out of ÎΘ

The behaviour of ÎΘ confirms the previous predictions: the hidden factor filtered remains the
major part of the time in the state 1, the steady state but is used to jump quickly to the volatile
state 0.
We may notice many periods where Θ jumps a lot to the systemic state 0. According to the model,
these moments may be interpreted as periods of crisis for the credit.
The most notable, during march 2014, is not specially linked to a famous economic event. Indeed,
many other underlying economical or political reasons might explain a stressed period. It would
be interesting to study and compare the evolution of highly correlated factors like borrow rates
during those periods.
Nevertheless the model may able to detect real crisis periods. The unfavourable period for the
credit identified by the model at the beginning of the summer 2015, corresponds to a stock market
crashed in China (a third of the value of Shanghai Stock Exchange was lost in a month).

The following plots show the features of two filtered intensities of jumps according to (16).
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Figure 14 Outs of ν̂AAA,Aa1 and ν̂Ca,C

4.4 Summary

The filtered hidden factor values carry lot of information about the credit economy cycle. This
last is used to remain in a stable and favourable state for the credit with regularly short jumps to
a worse and riskier state for the credit.
A raise of the frequency of these jumps may be witness of a crisis.
This study may be useful to detect systemic periods in the credit market. These periods may
relate scenarios useful to simulate historical stress tests.

These periods could be used in downturn period detection according to the Basel modelling
parameters as well.
The filtered value of IΘ could also identify the current states of the economy and detect cycle’s
disruptions.
The idea is to know in real time the state we are. According to the current observations, the
model furnishes the filtered value of the hidden state. The filtered value has the advantage to be
a continuous process.
Let’s Imagine that we could observe Θ with 2 states, one stable and one of crisis. We could
not prevent a period of stress since the break is brutal (in one day Θ jumps). We would have a
discontinuity in our PD estimations since we change suddenly from one state to another.
Using the filtered outputs furnishes a continuous PD and rating transitions probabilities estima-
tions according to the economic cycle.

On the other hand, the model could be improved by different ways:

• The type of data may be changed since financial instruments are stable elements and are
not a lot sensible to the evolution of the economy’s cycle.

• We can extend the Baum-Welsh algorithm to continuous time developed for instance in
biology according to the studies in [18].

• The most promising improvement would consists on developing a discrete version of the filter
to avoid the steps of discretization which lead to approximations. Furthermore the discrete
version would be consistent with the daily data format.

• The initial conditions and perturbations may be the purpose of further studies.
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